Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 197 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
¯Òä˯

°|¹Ë¯Èº¯
Pr
Λ
 °Èm«Ò® m °ººmË°mÒË }Èκ® º}Ë ¯Ë²ä˯Ӻº
˺äË¯Ò˰}ºº ¹¯º°¯ÈÓ°mÈ ËË º¯ººÓÈãÓ ¹¯ºË}ÒÓÈ
ÓË}ºº¯ ÁÒ}°Ò¯ºmÈÓÓ¹¯«ä ¹¯º²º« ˯ËÏ ÓÈÈãº
}ºº¯ÒÓÈ ºËmÒÓº ˰ ºº¯ÈÎËÓÒË
13
ΛΛ
 }ºº¯ºË ºÓÈ}º
äºÎÓº ¯È°°äÈ¯ÒmÈ Ò }È} ¹¯Ëº¯ÈϺmÈÓÒË ¯Ë²ä˯Ӻº
¹¯º°¯ÈÓ°mÈmºÓºä˯ӺË¹º¹¯º°¯ÈÓ°mº
|äËÒäº²º«mÈÓÓºä°ãÈËÒºº¯ÈÎËÓÒËÒ¹¯Ëº¯ÈϺmÈÓÒË
¯ËÈãÒÏ˺äË¯Ò˰}ÒºÓÒÎËÁÓ}ÒÏÈÈÒ²Ò²
äÈ¯ÒäºÎË©¯ÈÏãÒÓ©ä
sȹ¯Òä˯ ¹° m º¯ºÓº¯äÒ¯ºmÈÓÓº® °Ò°ËäË }ºº¯ÒÓÈ
{, , , }
Oe e e
123
→→
¹¯«äÈ« ÓÈ }ºº¯ m©¹ºãÓ«Ë°« º¯ººÓÈãÓºË ¹¯º
Ë}Ò¯ºmÈÓÒËÏÈÈÓÈÓȹ¯Èmã«ÒämË}º¯ºä
111
T

s˰ãºÎÓº ËÒ°« º¹¯Òªºä¯ÈÒ°mË}º¯ º¯ººÓÈãÓº®
¹¯ºË}ÒÒº}Ò
x
y
z
ËÒäËmÒ
x
y
z
xyz
xyz
xyz
=
++
++
++
3
3
3
º˰äÈ
¯ÒÈ ÈÓÓºº ¹¯Ëº¯ÈϺmÈÓÒ« ÒäËË
Pr
Λ
e
=
1
3
111
111
111
 sº °
¯º® °º¯ºÓ© ¹¯ÒÓ«m
e
1
Óº¯äÒ¯ºmÈÓÓ©® Óȹ¯Èmã«Ò® mË}º¯
ÈÓÓº® ¹¯«äº® ÏÈ ÈÏÒ°Ó©® m
1
Λ
 ¹ºãÒä °ºãȰӺ º¹¯ËËãËÓÒ
äÈ¯Òºº¯ÈÎËÓÒ«mmÒË
Pr
Λ
ee
=
1
3
111

°°ãÒÓˮө®º¹Ë¯Èº¯
A
°ÈmÒm°ººmË°mÒË}Èκ®äÈ¯ÒË
mº¯ºº¹º¯«}È
αα
αα
11 12
21 22
mä˯ө®°ºãËmÒÈ
αα
αα
11 12
21 22
+
+

j°°ã˺mÈÓÒË°mº®°mÈÓÓºººº¯ÈÎËÓÒ«äºÎÓº°m˰Ò}Ò°°ãË
ºmÈÓÒ °mº®°m ¹¯Ëº¯ÈϺmÈÓÒ« °Èm«˺ m °ººmË°mÒË
}mȯÈÓ©ä äÈ¯ÒÈä
αα
αα
11 12
21 22
}mȯÈÓ©Ë äÈ¯Ò© È
cÈÏËã 
ÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



                                                   Λ
 ¯Òä˯                  °|¹Ë¯Èˆº¯ Pr  °ˆÈm«Ò® m °ººˆmˈ°ˆmÒË }Èκ® ˆº}Ë ˆ¯Ë²ä˯Ӻº
                       ˺äˈ¯Ò˰}ºº ¹¯º°ˆ¯ÈÓ°ˆmÈ ËË º¯ˆººÓÈã ӂ  ¹¯ºË}Ò  ÓÈ
                              ÓË}ºˆº¯‚  ÁÒ}°Ò¯ºmÈÓӂ  ¹¯«ä‚  ¹¯º²º«‚  ˯ËÏ ÓÈÈãº
                                }ºº¯ÒÓȈ ºËmÒÓº ˰ˆ  ºˆº­¯ÈÎËÓÒË Λ3 → Λ1  }ºˆº¯ºË ºÓÈ}º
                                äºÎÓº ¯È°°äȈ¯ÒmȈ  Ò }È} ¹¯Ëº­¯ÈϺmÈÓÒË ˆ¯Ë²ä˯Ӻº
                                ¹¯º°ˆ¯ÈÓ°ˆmÈmºÓºä˯Ӻ˹º¹¯º°ˆ¯ÈÓ°ˆmº
                          
                          
                                |ˆäˈÒ䈺²ºˆ«mÈÓÓºä°ã‚ÈËÒºˆº­¯ÈÎËÓÒËÒ¹¯Ëº­¯ÈϺmÈÓÒË
                                ¯ËÈãÒς ˆ ˺äˈ¯Ò˰}Ò ºӂ Ò ˆ‚ ÎË Á‚Ó}Ò  mÒ ÏÈÈ Ò² Ò²
                                äȈ¯ÒäºÎˈ­©ˆ ¯ÈÏãÒÓ©ä
                                
                                sȹ¯Òä˯ ¹‚°ˆ  m º¯ˆºÓº¯äÒ¯ºmÈÓÓº® °Ò°ˆËäË }ºº¯ÒÓȈ
                                       → → →
                                 {O, e1 , e2 , e3 }  ¹¯«äÈ« ÓÈ }ºˆº¯‚  m©¹ºãӫˈ°« º¯ˆººÓÈã ÓºË ¹¯º
                                                                                                                                 T
                                Ë}ˆÒ¯ºmÈÓÒËÏÈÈÓÈÓȹ¯Èmã« ÒämË}ˆº¯ºä 1 1 1 
                                
                                s˰ãºÎÓº ‚­Ë҈ °« ˆº ¹¯Ò ªˆºä ¯È҂°mË}ˆº¯ º¯ˆººÓÈã Óº®
                                                                                                              x+ y+z
                                                x                   x∗                                           3
                                                                                                              x+ y+z
                                ¹¯ºË}ÒÒˆº}Ò y ­‚ˈÒäˈ mÒ y ∗                                     =        ˆº˰ˆ äȈ
                                                                                                                 3
                                                z                   z∗                                        x+ y+z
                                                                                                                 3
                                                                                                                              1 1 1
                                                                                                                Λ          1
                                ¯ÒÈ ÈÓÓºº ¹¯Ëº­¯ÈϺmÈÓÒ« ÒäËˈ mÒ Pr                                            =    1 1 1  sº °
                                                                                                                     e      3
                                                                                                                              1 1 1
                                                                               →
                                ¯‚º® °ˆº¯ºÓ© ¹¯ÒÓ«m e1∗  Óº¯äÒ¯ºmÈÓÓ©® Óȹ¯Èmã« Ò® mË}ˆº¯
                                ÈÓÓº® ¹¯«äº® ÏÈ ­ÈÏÒ°Ó©® m Λ1  ¹ºã‚Òä °ºãȰӺ º¹¯ËËãËÓÒ 
                                                                                                  Λ                 1
                                äȈ¯Ò‚ºˆº­¯ÈÎËÓÒ«mmÒË Pr                                      =          1 1 1 
                                                                                                      ee∗            3
                          
                          
                          °‚°ˆ ãÒÓˮө®º¹Ë¯Èˆº¯ A °ˆÈm҈m°ººˆmˈ°ˆmÒË}Èκ®äȈ¯ÒË
                                                                α11 α12                            α11 + α12
                                mˆº¯ºº¹º¯«}È                          m‚ä˯ө®°ˆºã­ËmÒÈ             
                                                                α 21 α 22                          α 21 + α 22
                          
                          
                                j°°ã˺mÈÓÒ˰mº®°ˆmÈÓÓºººˆº­¯ÈÎËÓÒ«äºÎÓº°m˰ˆÒ}Ò°°ãË
                                ºmÈÓÒ  °mº®°ˆm ¹¯Ëº­¯ÈϺmÈÓÒ« °ˆÈm«Ëº m °ººˆmˈ°ˆmÒË
                                                                                α11 α12
                                }mȯȈөä äȈ¯ÒÈä                                      }mÈ¯ÈˆÓ©Ë äȈ¯Ò© mÒÈ
                                                                                α 21 α 22