Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 199 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
° |ãȰÏÓÈËÓÒ® ãÒÓˮӺº ºº¯ÈÎËÓÒ«
A
°º°ºÒ ÒÏ ªãËäËÓºm
y
∈Θ
È}Ò²
º
yAx x=∀
,
{}ºº¯ÒÓÈÓº®Áº¯äË¹¯ÒÓÈãËÎÓº°ªãËäËÓÈ
y
}äÓº
Î˰mÏÓÈËÓÒ®ºÏÓÈÈË°ºmä˰Óº°°Ò°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
123
234
357
1
2
3
1
2
3
ξ
ξ
ξ
η
η
η
=

°ã˺mÈËãÓº ÓÈä Ó˺²ºÒäº m©«°ÓÒ ¹¯Ò }È}Ò² ÏÓÈËÓÒ«²
ηηη
123
,,
ÈÓÓÈ«
°Ò°ËäÈãÒÓˮө²¯ÈmÓËÓÒ®°ºmä˰ÓÈw väºÎÓº°ËãÈÓȹ¯Òä˯¹¯Ò¹º
äºÒ˺¯Ëä©z¯ºÓË}˯ÈzȹËããÒ°¯ÈmÓÒm¯ÈÓÒº°ÓºmÓº®Ò¯È°Ò¯ËÓ
Óº®äÈ¯ÒÈÓÓº®°Ò°Ëä©
jÏ°ãºmÒ«
2
753
432
321
rg
000
2210
321
rg
753
432
321
rg
321
21
1
3
2
1
==
+
=
ηηη
ηη
η
η
η
η
ÓÈ®Ëä º ã« °ºmä˰Óº°Ò Ó˺²ºÒäº Ò º°ÈºÓº º©
ηηη
123
0+−=

ºm°mººË¯ËºÏÓÈÈËºäÓºÎ˰mºÏÓÈËÓÒ®ºº¯ÈÎËÓÒ«
A
°º°ºÒÒÏ
ªãËäËÓºmmÒÈ
2121
3
2
1
,,
1
0
1
0
1
1
λλλλ
η
η
η
+
=

«mã«Ò²°«¯ËËÓÒ«äÒ¯ÈmÓËÓÒ«
ηηη
123
0
+−=

~ÈäËÒäÓÈ}ºÓËº¹º°}ºã}ÓË}ÈΩ®ªãËäËÓ
3
Λ=Θy
ÒäËË¹¯ºº¯ÈÏm
3
Λ=
ºÈÓÓºËºº¯ÈÎËÓÒËÓË«mã«Ë°«Ò°¯Ë}ÒmÓ©ä
jÓmȯÒÈÓÓ©Ë¹º
¹¯º°¯ÈÓ°mÈÒ°º°mËÓÓ©ËmË}º¯©
|¹¯ËËãËÓÒË

º¹¯º°¯ÈÓ°mº
Λ
ãÒÓˮӺº ¹¯º°¯ÈÓ°mÈ
Λ
ÓÈÏ©mÈË°« qtkjéq
jtztuwvlwévxzéjtxzkvusqtnptvmvvwnéjzvéj
A
˰ãÒã«}Èκº
ªãËäËÓÈ
ΛΛ
xAx
ˆ
:

cÈÏËã 
ÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



° |­ãȰˆ  ÏÓÈËÓÒ® ãÒÓˮӺº ºˆº­¯ÈÎËÓÒ« A  °º°ˆºÒˆ ÒÏ ªãËäËӈºm y ∈Θ  ˆÈ}Ò²
                   , ∀x ∈ Ω {}ºº¯ÒÓȈӺ®Áº¯ä˹¯ÒÓÈãËÎÓº°ˆ ªãËäËӈÈ y }äÓº
         ˆº y = Ax
         Î˰ˆm‚ÏÓÈËÓÒ®ºÏÓÈÈˈ°ºmä˰ˆÓº°ˆ °Ò°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®


                                                              1 2 3             ξ1   η1
                                                              2 3 4             ξ2 = η2 
                                                              3 5 7             ξ3   η3
                                               
         °ã˺mȈËã Óº ÓÈä Ó˺­²ºÒäº m©«°Ó҈  ¹¯Ò }È}Ò² ÏÓÈËÓÒ«² η1 , η2 , η3  ÈÓÓÈ«
         °Ò°ˆËäÈãÒÓˮө²‚¯ÈmÓËÓÒ®°ºmä˰ˆÓÈwˆ väºÎÓº°ËãȈ Óȹ¯Òä˯¹¯Ò¹º
         亝҈˺¯Ëä© z¯ºÓË}˯ÈzȹËããÒ °¯ÈmÓÒm¯ÈÓÒº°ÓºmÓº®Ò¯È° Ò¯ËÓ
         Óº®äȈ¯ÒÈÓÓº®°Ò°ˆËä©
         
         jÏ‚°ãºmÒ«
         
                               1 2 3 η1       1 2 3       η1             1 2 3
                            rg 2 3 4 η 2 = rg 0 1 2    2η1 − η 2    = rg 2 3 4 = 2 
                               3 5 7 η3       0 0 0 − η1 − η 2 + η3      3 5 7
                                                                                     
         
         ÓÈ®Ëä ˆº ã« °ºmä˰ˆÓº°ˆÒ Ó˺­²ºÒäº Ò º°ˆÈˆºÓº ˆº­© η1 + η 2 − η 3 = 0 
         ˆºm°mº º˯Ë ºÏÓÈÈˈˆºäÓºÎ˰ˆmºÏÓÈËÓÒ®ºˆº­¯ÈÎËÓÒ« A °º°ˆºÒˆÒÏ
         ªãËäËӈºmmÒÈ
         
                                                    η1      −1      1
                                                    η 2 = λ1 1 + λ2 0 , ∀λ1 , λ2 
                                                    η3       0      1
         
         «mã« Ò²°«¯Ë ËÓÒ«äÒ‚¯ÈmÓËÓÒ« η1 + η2 − η3 = 0 
         
         ~ÈäˈÒäÓÈ}ºÓˈº¹º°}ºã }‚ÓË}ÈΩ®ªãËäËӈ y ∈ Θ = Λ3 ÒäËˈ¹¯ºº­¯ÈÏm
         Ω = Λ3 ˆºÈÓӺ˺ˆº­¯ÈÎËÓÒËÓË«mã«Ëˆ°«Ò° ¯žË}ˆÒmÓ©ä
             
             
             
             
jÓmȯÒÈӈө˹º¹¯º°ˆ¯ÈÓ°ˆmÈÒ°º­°ˆmËÓÓ©ËmË}ˆº¯©
             
             
             
    |¹¯ËËãËÓÒË           º¹¯º°ˆ¯ÈÓ°ˆmº Λ∗  ãÒÓˮӺº ¹¯º°ˆ¯ÈÓ°ˆmÈ Λ  ÓÈÏ©mÈˈ°« qtkjéq
    
                           jtzt€uwvlwévxzéjtxzkvusqtnptvmvvwnéjzvéj A ˰ãÒã«}Èκº
                           ªãËäËӈÈ x ∈ Λ∗ :              Aˆ x ∈ Λ∗