Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 201 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
=======
Λ====
∑∑∑∑
r
i
i
r
i
iik
r
k
ik
r
k
i
r
i
ikk
r
k
kk
r
k
kk
ggggAgA
1111111
)()
ˆ
()(
ˆ
βλααλλλ

jÏ˺¯Ëä©°ãËËº
Λ
¹º¹¯º°¯ÈÓ°mºiº°ÈºÓº°º}ÈÏÈÓÈ
iº}ÈÎËä Ó˺²ºÒ亰 °
Λ
˰ ÒÓmȯÒÈÓÓºË ¹º¹¯º°¯ÈÓ°mº
ãÒÓˮӺº º¹Ë¯Èº¯È
A
 «mã«Ë˰« ãÒÓˮӺ® ººãº}º® ¹ºäÓºÎ˰mÈ
ÈÏÒ°Ó©²mË}º¯ºm
},...,,{
21 r
ggg

ºÈ º¯ÈÏ ãººmºäÒ°ãË Ò ÈÏÒ°Óºº ªãËäËÓÈ ¹¯ÒÓÈãËÎÈ˺
Λ

È}ÎËË¹¯ÒÓÈãËÎÈ
Λ
wºm°mººË¯ËºÏÓÈÈËº
],1[;0
ˆ
11
rkgggA
i
n
ri
i
r
i
ikk
=+=
+==
α
Òm°ºËÈÓÒÒ°º¹¯ËËãËÓÒËäº}ÈÏ©mÈËÓ˺²ºÒ亰
˺¯ËäÈº}ÈÏÈÓÈ
ÈÈ

Ívrjojz·zvkx¹rvnqtkjéqjtztvnwvlwévxzéjtxzkvtnkévlnttv
mv sqtnptvmv vwnéjzvéj
A
¹ks¹nzx¹ zjrn qtkjéqjtztu wvlwév
xzéjtxzkvuvwnéjzvéj
A
1

ËÓÒË
°
Λx
Ë
Λ
ÒÓmȯÒÈÓÓºË¹º¹¯º°¯ÈÓ°mºº¹Ë¯Èº¯È
A

ºÈ¹º°ãºmÒÏÈÈÒ
Λ= xAy
ˆ

p°ãÒº¹Ë¯Èº¯
A
ÓËm©¯ºÎËÓÓ©®ºã«Ó˺°˰mËº¯ÈÓ©®
A
1
Ò°m«ÏªãËäËÓºm
Λ
yx
,
äºÎÓºÏȹҰÈmmÒË
xAy
=
1
º
ÒºÏÓÈÈËÒÓmȯÒÈÓÓº°¹º¹¯º°¯ÈÓ°mÈ
Λ
ºÓº°ÒËãÓºº¹Ë¯È
º¯È
A
1

cȰ°äº¯Òä˹˯°ãºmÒ«¹¯Ò}ºº¯©²ãÒÓˮӺºº¹Ë¯Èº¯È˰vltvunétvn
ÒÓmȯÒÈÓÓºË¹º¹¯º°¯ÈÓ°mº
|¹¯ËËãËÓÒË

ËntysnkvpªãËäËÓ
Λ
f
ÓÈÏ©mÈË°«xvixzknttuknrzvévuãÒÓˮӺº
º¹Ë¯Èº¯È
A
˰ãÒ °˰mËÒ°ãº
λ
È}ºËº
Af f
=
λ
Ò°ãº
λ
ÓÈÏ©mÈË°« xvixzknttu otj·ntqnu vwnéjzvéj
A
xvvzknzxzkyíqu
xvixzknttvuyknrzvéy
f

cÈÏËã 
ÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



                            r                  r                        r      r               r     r                      r
                       Aˆ ( ∑ λ k g k ) = ∑ λ k ( Aˆ g k ) = ∑ λ k ∑α ik g i =∑ ( ∑α ik λ k ) g i = ∑ β i g i ∈ Λ∗ 
                           k =1               k =1                    k =1   i =1             i =1 k =1                    i =1
            
            jψ˺¯Ëä©°ãË‚ˈˆº Λ∗ ¹º¹¯º°ˆ¯ÈÓ°ˆmºiº°ˆÈˆºÓº°ˆ º}ÈÏÈÓÈ
  
            iº}ÈÎËä Ó˺­²ºÒ亰ˆ  ‚°ˆ  Λ∗  ˰ˆ  ÒÓmȯÒÈӈӺË ¹º¹¯º°ˆ¯ÈÓ°ˆmº
            ãÒÓˮӺº º¹Ë¯Èˆº¯È      A  «mã« Ë˰« ãÒÓˮӺ® º­ºãº}º® ¹ºäÓºÎ˰ˆmÈ
            ­ÈÏÒ°Ó©²mË}ˆº¯ºm {g1, g 2 ,..., g r } 
            
            ‘ºÈ º­¯ÈÏ ã ­ºº m ˆºä Ò°ãË Ò ­ÈÏÒ°Óºº ªãËäËӈÈ ¹¯ÒÓÈãËÎȝ˺ Λ∗ 
            ˆÈ}ÎË­‚ˈ¹¯ÒÓÈãËÎȈ  Λ∗ wˆºm°mº º˯Ë ºÏÓÈÈˈˆº
            
                                                                  r                   n
                                                      Aˆ g k = ∑α ik g i +          ∑ 0g i ;       k = [1, r ] 
                                                                 i =1              i = r +1
            
            Òm°ºˈÈÓÒÒ°º¹¯ËËãËÓÒËäº}ÈÏ©mÈˈÓ˺­²ºÒ亰ˆ 
        
        ‘˺¯ËäȺ}ÈÏÈÓÈ
                
                
                
    ~ÈÈÈ                Ívrjojz·zvkx¹rvnqtkjéqjtztvnwvlwévxzéjtxzkvtnk€év lnttv
    
                           mv sqtnptvmv vwnéjzvéj A  ¹ks¹nzx¹ zjr n qtkjéqjtzt€u wvlwév
                           xzéjtxzkvuvwnéjzvéj A −1 
                           
    cËËÓÒË              ‚°ˆ  x ∈ Λ∗ Ë Λ∗ ÒÓmȯÒÈӈӺ˹º¹¯º°ˆ¯ÈÓ°ˆmºº¹Ë¯Èˆº¯È A 
    
                           ˆºÈ¹º‚°ãºmÒ ÏÈÈÒ y = Aˆ x ∈ Λ∗ 
                           p°ãÒ º¹Ë¯Èˆº¯ A  ÓËm©¯ºÎËÓÓ©® ˆº ã« Ó˺ °‚Ë°ˆm‚ˈ º­¯ÈˆÓ©®
                            A −1 Ò°m«Ï ªãËäËӈºm x, y ∈ Λ∗ äºÎÓºÏȹҰȈ mmÒË x = A −1 y ˆº
                           ÒºÏÓÈÈˈÒÓmȯÒÈӈӺ°ˆ ¹º¹¯º°ˆ¯ÈÓ°ˆmÈ Λ∗ ºˆÓº°ÒˆËã Óºº¹Ë¯È
                           ˆº¯È A −1 
          
          
         cȰ°äºˆ¯ÒäˆË¹Ë¯ ‚°ãºmÒ«¹¯Ò}ºˆº¯©²‚ãÒÓˮӺºº¹Ë¯Èˆº¯È˰ˆ vltvunétvn
ÒÓmȯÒÈӈӺ˹º¹¯º°ˆ¯ÈÓ°ˆmº
          
          
 |¹¯ËËãËÓÒË    ËntysnkvpªãËäËӈ f ∈ Λ ÓÈÏ©mÈˈ°«xvixzkntt€uknrzvévuãÒÓˮӺº
 
                 º¹Ë¯Èˆº¯È A  ˰ãÒ °‚Ë°ˆm‚ˈ Ò°ãº λ ˆÈ}ºË ˆº A f = λ f  Ұ㺠λ
                           ÓÈÏ©mÈˈ°« xvixzkntt€u otj·ntqnu vwnéjzvéj A  xvvzknzxzkyíqu
                           xvixzknttvuyknrzvéyf