Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 202 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
~ÈäËÈÓÒËºmÈÎÓº°Ò°º°mËÓÓ©²mË}º¯ºm
iº¹°Òäºã«ÓË}ºº¯ººãÒÓˮӺºº¹Ë¯Èº¯È
A
ÏÈÈÓÓººm
n
Λ
È㺰
ÓÈ®Ò Q ãÒÓˮӺ ÓËÏÈmÒ°Ò䩲 °º°mËÓÓ©² mË}º¯ºm
},...,,{
21
n
fff
 wº ºÏÓÈÈË º
m©¹ºãÓËÓ©¯ÈmËÓ°mÈ
nnn
ffAffAffA
λλλ
===
ˆ
;...;
ˆ
;
ˆ
222111

¯ÒÓ«mªÒªãËäËÓ©ÏÈÈÏÒ°Ò°²º«ÒÏº¹¯ËËãËÓÒ«äºÎÓºÏÈ}ãÒ
ºäÈ¯ÒÈãÒÓˮӺºº¹Ë¯Èº¯È
A
mªºäÈÏÒ°ËËÒäËÒȺÓÈãÓ©®mÒ
...
...
... ... ... ...
...
A
f
n
=
λ
λ
λ
1
2
00
00
00

ã«}ºº¯ººÒ°°ã˺mÈÓÒË°mº®°mªººº¹Ë¯Èº¯È°˰mËÓÓº¹¯ºÈË°«
ÈÈ

Ívrjojz·zvnxsqsqtnptpvwnéjzvé
A
qunnzxvixzknttpknrzvé
f
xxvvzknzxzkyíqunuyxvixzknttuotj·ntqnu
λ
zvësnuntz
f
iy
lnz zjrn ¹ks¹zx¹ xvixzknttu knrzvévu sqtnptvmv vwnéjzvéj

AAA
2
=
xxvixzknttuotj·ntqnu
λ
2

ËÓÒË
º°ãºmÒ
Af f
=
λ
ÓººÈm°ÒããÒÓˮӺ°Òº¹Ë¯Èº¯È
$

(
)
()Af AAf A f f
22
===
λλ

Ò°ãËÓÒË°º°mËÓÓ©²mË}º¯ºmÒ°º°mËÓÓ©²ÏÓÈËÓÒ®ãÒÓˮӺºº¹Ë¯Èº¯È
{©˯Ëä m
n
Λ
ÓË}ºº¯©® ÈÏÒ°
},...,,{
21 n
ggg
 m }ºº¯ºä ¯ÈÏãºÎËÓÒË ªãËäËÓÈ
n
f
Λ
Ë
fg
ii
i
n
=
=
ξ
1
°ÒäËË°«ãÒÓˮө®º¹Ë¯Èº¯°äÈ¯ÒË®
A
g
kj
=
α
m
ªºäÈÏÒ°Ë
cÈmËÓ°mº
Af f
=
λ
m}ºº¯ÒÓÈÓº®Áº¯äËÒäËËmÒ
gg
g
ffA
λ
=
ˆ
º˰
=+++
=+++
=+++
ξ
λ
ξ
α
ξ
α
ξ
α
ξ
λ
ξ
α
ξ
α
ξ
α
ξ
λ
ξ
α
ξ
α
ξ
α
nnnnn
nn
nn
...
...................................................
...
...
2211
22222121
11212111
ÒãÒ
=+++
=+++
=+++
0)(...
........................................................
0...)(
0...)(
2211
2222121
1212111
nnnnn
nn
nn
ξ
λα
ξ
α
ξ
α
ξ
α
ξ
λα
ξ
α
ξ
α
ξ
α
ξ
λα

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



~ÈäËÈÓÒ˺mÈÎÓº°ˆÒ°º­°ˆmËÓÓ©²mË}ˆº¯ºm
          
          
             iº¹‚°ˆÒ䈺ã«ÓË}ºˆº¯ººãÒÓˮӺºº¹Ë¯Èˆº¯È A ÏÈÈÓÓººm Λn ‚È㺰 
ÓÈ®ˆÒ Q ãÒÓˮӺ ÓËÏÈmÒ°Ò䩲 °º­°ˆmËÓÓ©² mË}ˆº¯ºm { f1, f 2 ,..., f n }  wˆº ºÏÓÈÈˈ ˆº
m©¹ºãÓËÓ©¯ÈmËÓ°ˆmÈ Aˆ f1 = λ1 f1 ; Aˆ f 2 = λ 2 f 2 ; ... ; Aˆ f n = λ n f n 
       
       ¯ÒÓ«mªˆÒªãËäËӈ©ÏÈ­ÈÏÒ°Ò°²º«ÒϺ¹¯ËËãËÓÒ«äºÎÓºÏÈ}ã ҈ 
ˆºäȈ¯ÒÈãÒÓˮӺºº¹Ë¯Èˆº¯È A mªˆºä­ÈÏÒ°Ë­‚ˈÒäˈ ÒȺÓÈã Ó©®mÒ
                                                                      λ1       0      ...     0
                                                                       0       λ2     ...     0
                                                           A       =                              
                                                                f     ...      ...    ... ...
                                                                       0        0     ... λ n
ã«}ºˆº¯ººÒ°°ã˺mÈÓÒ˰mº®°ˆmªˆººº¹Ë¯Èˆº¯È°‚Ë°ˆmËÓÓº‚¹¯ºÈˈ°«
        
 ~ÈÈÈ                 Ívrjojz·zvnxsqsqtnpt€pvwnéjzvé A qunnzxvixzkntt€pknrzvé
 
                         fxxvvzknzxzkyíqunuyxvixzkntt€uotj·ntqnu λzvësnuntz fiy
                         lnz zjr n ¹ks¹zx¹ xvixzkntt€u knrzvévu sqtnptvmv vwnéjzvéj
                                                                                      2
                             A 2 = AA
                                      xxvixzkntt€uotj·ntqnuλ 
                         
 cËËÓÒË                            = λ f ÓºˆºÈm°Òã‚ãÒÓˮӺ°ˆÒº¹Ë¯Èˆº¯È $ 
                         º‚°ãºmÒ  Af
 
                                                                A 2 f = A ( Af
                                                                               ) = A ( λf ) = λ2 f 
             
             
             
{©Ò°ãËÓÒ˰º­°ˆmËÓÓ©²mË}ˆº¯ºmÒ°º­°ˆmËÓÓ©²ÏÓÈËÓÒ®ãÒÓˮӺºº¹Ë¯Èˆº¯È
             
             
            {©­Ë¯Ëä m Λn  ÓË}ºˆº¯©® ­ÈÏÒ° {g1, g 2 ,..., g n }  m }ºˆº¯ºä ¯ÈÏãºÎËÓÒË ªãËäËӈÈ
                               n
 f ∈ Λ ­‚ˈ f = ∑ ξi g i ‚°ˆ ÒäËˈ°«ãÒÓˮө®º¹Ë¯Èˆº¯°äȈ¯ÒË® A
        n
                                                                                                                                 g
                                                                                                                                     = α kj m
                              i =1
ªˆºä­ÈÏÒ°Ë
      
      
            cÈmËÓ°ˆmº A f = λ f m}ºº¯ÒÓȈӺ®Áº¯äËÒäËˈmÒ Aˆ                                            f   g
                                                                                                                         =λ f    g
                                                                                                                                     ˆº˰ˆ 
                                                                                                             g
             
   α11ξ1 + α12ξ 2 + ... + α1nξ n = λξ1                            (α11 − λ )ξ1 + α12ξ 2 + ... + α1nξ n = 0
  α ξ + α ξ + ... + α ξ = λξ                                     α ξ + (α − λ )ξ + ... + α ξ = 0
   21 1          22 2                2n n            2            21 1            22           2             2n n
                                                      ÒãÒ                                                             
   ...................................................            ........................................................
   α n1ξ1 + α n2ξ 2 + ... + α nnξ n = λξ                        α n1ξ1 + α n 2ξ 2 + ... + (α nn − λ )ξ n = 0