Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 203 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
º°}ºã}°º°mËÓÓ©®mË}º¯ºãÎËÓ©ÓËÓãËm©ä¹ºº¹¯ËËãËÓÒºÓȰ
ÒÓ˯˰ ºã}º tnzéqkqjstn¯ËËÓÒ« °Ò°Ëä©  Ó˺²ºÒä©ä °ãºmÒËä
°˰mºmÈÓÒ«}ºº¯©²°ºãȰӺ °ã˰mÒ  «mã«Ë°« éjkntxzkv tysí vwénlnsq
zns¹vxtvktvpujzéq|xqxznu
È}Òä º¯ÈϺä ä© ¹¯Ò²ºÒä } °ãºmÒ }ºº¯ºä ºãÎÓ© ºmãËmº¯«
°º°mËÓÓ©ËÏÓÈËÓÒ«ÈÓÓººãÒÓˮӺºº¹Ë¯Èº¯È

det
αλδ
kj kj
−=0
ÒãÒÎË
det
...
...
... ... ... ...
...
.
αλα α
ααλ α
αα αλ
11 12 1
21 22 2
12
0
=
n
n
nn nn

|¹¯ËËãËÓÒË

¯ÈmÓËÓÒË
det

AE
g
−=
λ
0
ÓÈÏ©mÈË°« }jéjrznéqxzq·nxrqu yéjktn
tqnu È º¹¯ËËãÒËã
det

AE
g
λ
}jéjrznéqxzq·nxrqu utvmv·sn
tvuº¹Ë¯Èº¯È
A
lnpxzkyínmvk
n
Λ

tȯÈ}˯ҰÒ˰}ºË ¯ÈmÓËÓÒË «mã«Ë°« ÈãË¯ÈÒ˰}Òä ¯ÈmÓËÓÒËä
n
® °Ë
¹ËÓÒºÓº°ÒËãÓº
λ
º°ãËËÒÏº¹¯ËËãËÓÒ«Ë˯äÒÓÈÓÈÒÁº¯äã©
Òm²È¯È}˯ҰÒ˰}ºË¯ÈmÓËÓÒËÒÏºÓº¯ºÓº®°Ò°Ëä©¯ÈmÓËÓÒ®
äºÎÓºÓÈ®Ò°º°mËÓÓ©ËmË}º¯©°ººmË°mÒË¹º°ã˺mÈËãÓº¹º°Èm
ã«Ëä©ä m º°ÓºmÓ äÈ¯Ò ªº® °Ò°Ëä© ÓÈ®ËÓÓ©ä °º°mËÓÓ©ä ÏÓÈËÓÒ«ä
¯Òä˯©Ò°¹ºãϺmÈÓÒ«ÈÓÓººÈ㺯ÒäÈÒãã°¯Ò¯¯ËËÓÒ«ÏÈÈÒ
{ °ãÈË ãÒÓˮө² ¹¯º°¯ÈÓ°m ÓË ÒäËÒ² ÈÏÒ°È ÏÈÈÈ º©°}ÈÓÒ«
°º°mËÓÓ©² ÏÓÈËÓÒ® Ò ¹º°¯ºËÓÒ« °º°mËÓÓ©² mË}º¯ºm äºÎË º}ÈÏÈ°«
ÏÓÈÒËãÓº °ãºÎÓËË sȹ¯Òä˯ m ãÒÓˮӺä ¹¯º°¯ÈÓ°mË ÁÓ}Ò® ÒäËÒ² ÓÈ
ÓË}ºº¯ºä ÒÓ˯mÈãË ¹¯ºÒÏmºÓãºº ¹º¯«}È ãÒÓˮө® º¹Ë¯Èº¯
ÒÁÁ˯ËÓÒ¯ºmÈÓÒ«ÒäËË˰}ºÓËÓºäÓºº°º°mËÓÓ©²mË}º¯ºmÈ
f
e
()
τα
λτ
=
Ë
α
¹¯ºÒÏmºãÓÈ« ÓËÓãËmÈ« }ºÓ°ÈÓÈ Ò °ººmË°mÒ² Òä °º°mËÓÓ©²
ÏÓÈËÓÒ®
λ
ÓȲºÒ䩲ÒÏ°ãºmÒ«
Af f
=
λ
º˰ÒÏÒÁÁ˯ËÓÒÈãÓºº¯ÈmÓËÓÒ«
f
d
fd
λ
τ
=

cÈÏËã 
ÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



      º°}ºã }‚ °º­°ˆmËÓÓ©® mË}ˆº¯ ºãÎËÓ­©ˆ ÓËӂãËm©ä¹ºº¹¯ËËãËÓÒ ˆºÓȰ
Òӈ˯˰‚ ˆ ˆºã }º tnzéqkqjst€n ¯Ë ËÓÒ« °Ò°ˆËä©   Ó˺­²ºÒä©ä ‚°ãºmÒËä
°‚Ë°ˆmºmÈÓÒ« }ºˆº¯©² °ºãȰӺ °ã˰ˆmÒ   «mã«Ëˆ°« éjkntxzkv tysí vwénlnsq
zns¹vxtvktvpujzéq|€xqxznu€  
      
      
      ‘È}Òä º­¯ÈϺä ä© ¹¯Ò²ºÒä } ‚°ãºmÒ  }ºˆº¯ºä‚ ºãÎÓ© ‚ºmãˈmº¯«ˆ 
°º­°ˆmËÓÓ©ËÏÓÈËÓÒ«ÈÓÓººãÒÓˮӺºº¹Ë¯Èˆº¯È
      
      
      
                                                         α11 − λ   α12                               ...    α1n
                                                          α 21   α 22 − λ                            ...   α 2n
 det α kj − λ δkj           = 0 ÒãÒÎË det                                                          =0                .   
                                                           ...      ...                              ...     ...
                                                          α n1     α n2                              ... α nn − λ
               
               
               
    |¹¯ËËãËÓÒË           ¯ÈmÓËÓÒË det A − λ E                        = 0  ÓÈÏ©mÈˈ°« }jéjrznéqxzq·nxrqu yéjktn
                                                                g

                           tqnu È º¹¯ËËã҈Ëã  det A − λ E                               }jéjrznéqxzq·nxrqu utvmv·sn
                                                                                         g

                           tvuº¹Ë¯Èˆº¯È A lnpxzkyínmvk Λ n 
        
        
        tȯÈ}ˆË¯Ò°ˆÒ˰}ºË ‚¯ÈmÓËÓÒË «mã«Ëˆ°« ÈãË­¯ÈÒ˰}Òä ‚¯ÈmÓËÓÒËä n® °ˆË
¹ËÓÒºˆÓº°ÒˆËã Óºλˆº°ãË‚ˈÒϺ¹¯ËËãËÓÒ«ˈ˯äÒÓÈӈÈÒÁº¯ä‚ã©  
        
        cË Òm²È¯È}ˆË¯Ò°ˆÒ˰}ºË‚¯ÈmÓËÓÒË  ÒϺӺ¯ºÓº®°Ò°ˆËä©‚¯ÈmÓËÓÒ®
  äºÎÓºÓÈ®ˆÒ°º­°ˆmËÓÓ©ËmË}ˆº¯©°ººˆmˈ°ˆm‚ Ò˹º°ã˺mȈËã Óº¹º°ˆÈm
ã«Ëä©ä m º°Óºmӂ  äȈ¯Ò‚ ªˆº® °Ò°ˆËä© ÓÈ®ËÓÓ©ä °º­°ˆmËÓÓ©ä ÏÓÈËÓÒ«ä
¯Òä˯©Ò°¹ºã ϺmÈÓÒ«ÈÓÓººÈ㺯҈äÈÒãã °ˆ¯Ò¯‚ ˆ¯Ë ËÓÒ«ÏÈÈÒ
        
        
        { °ã‚ÈË ãÒÓˮө² ¹¯º°ˆ¯ÈÓ°ˆm ÓË ÒäË Ò² ­ÈÏÒ°È ÏÈÈÈ ºˆ©°}ÈÓÒ«
°º­°ˆmËÓÓ©² ÏÓÈËÓÒ® Ò ¹º°ˆ¯ºËÓÒ« °º­°ˆmËÓÓ©² mË}ˆº¯ºm äºÎˈ º}ÈÏȈ °«
ÏÓÈ҈Ëã Óº °ãºÎÓËË sȹ¯Òä˯ m ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË Á‚Ó}Ò® ÒäË Ò² ÓÈ
ÓË}ºˆº¯ºä Òӈ˯mÈãË ¹¯ºÒÏmºӂ  ã ­ºº ¹º¯«}È ãÒÓˮө® º¹Ë¯Èˆº¯
ÒÁÁ˯ËÓÒ¯ºmÈÓÒ« ÒäËˈ ­Ë°}ºÓËÓºäÓºº°º­°ˆmËÓÓ©²mË}ˆº¯ºmmÒÈ f (τ ) = α e λτ 
 Ë α  ¹¯ºÒÏmºã ÓÈ« ÓËӂãËmÈ« }ºÓ°ˆÈÓˆÈ  Ò °ººˆmˈ°ˆm‚ Ò² Òä °º­°ˆmËÓÓ©²
ÏÓÈËÓÒ®λÓȲºÒ䩲ÒÏ‚°ãºmÒ« A f = λ f ˆº˰ˆ ÒÏÒÁÁ˯ËÓÒÈã Óºº‚¯ÈmÓËÓÒ«
      
                                                                      df
                                                                         = λ f 
                                                                      dτ