Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 200 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
¯Òä˯

°lÓºÎ˰mº ¯ÈÒ°mË}
º¯ºm ºË} ÓË}ºº¯º®
¹¯«äº® ÓÈ ¹ãº°}º°Ò
Oxy

¹¯º²º«Ë® ˯ËÏ ÓÈÈãº
}ºº¯ÒÓÈ «mã«Ë°« ÒÓmÈ
¯ÒÈÓÓ©ä ¹º¹¯º°¯ÈÓ°
mºä º¹Ë¯Èº¯È ¹ºmº¯ºÈ ÓÈ
ºã
π
ªÒ² ¯ÈÒ°
mË}º¯ºm mº}¯ º°Ò
Oz

cÒ°
z
O
π
y
x
èqxytvr
° iã« º¹Ë¯Èº¯È ÒÁÁ˯ËÓÒ¯ºmÈÓÒ« m ãÒÓˮӺä ¹¯º°¯ÈÓ°mË
ÁÓ}Ò®
f(
τ
)
 ÒäËÒ² ÓÈ
(,)
αβ
¹¯ºÒÏmºÓãºº ¹º¯«}È
n
ä˯өä ÒÓmȯÒÈÓÓ©ä ¹º¹¯º°¯ÈÓ°mºä «mã«Ë°« ãÒÓË®ÓÈ«
ººãº}È °ºmº}¹Óº°Ò ªãËäËÓºm È ^
τττ
λλλ
n
eee
,...,,
21
` Ë
n
λλλ
,...,,
21
ÓË}ºº¯©Ë¹º¹È¯Óº¯ÈÏãÒÓ©Ë}ºÓ°ÈÓ©
˺¯ËäÈ

lÈ¯ÒÈãÒÓˮӺºº¹Ë¯Èº¯È
A
ÏÈÈÓÓººmãÒÓˮӺä¹¯º°¯ÈÓ°
mË
n
Λ
°ÈÏÒ°ºä
},...,,{
21
n
ggg
º

ÈÒºã
}ºº

ÈÒäËËmÒ
nnrn
nrrr
rnrrrrr
nrr
αα
αα
αααα
αααα
...0...0
..................
...0...0
......
..................
......
1,
,11,1
1,1
11,1111
+
+++
+
+


È ãÒÓË®ÓÈ« ººãº
}È ¹º
äÓºÎ˰mÈ ÈÏÒ°Ó©² ªãËäËÓºm
},...,,{
21
r
ggg
˰
ÒÓmȯÒÈÓÓºË¹º
¹¯º°¯ÈÓ°mºº¹Ë¯Èº¯È
A
iº}ÈÏÈËã°mº
iº}ÈÎËä º°ÈºÓº° ° äÈ¯ÒÈ º¹Ë¯Èº¯È
A
ÒäËË }ÈÏÈÓÓ©® m
Áº¯äãÒ¯ºm}Ë˺¯Ëä©ºÈº¯ÈÏãº®ãÒÓˮӺ®}ºäÒÓÈÒÒªãËäËÓºm
},...,,{
21
r
ggg
Ë ¹¯ÒÓÈãËÎÈ Ò² ãÒÓˮӺ® ººãº}Ë ¹º°}ºã}m°Òã
º¹¯ËËãËÓÒ«  }ÈΩ® °ºãË äÈ¯Ò© ãÒÓˮӺº º¹Ë¯Èº¯È °º°ÈmãËÓ ÒÏ
}ºä¹ºÓËÓºmº¯ÈÏÈ°ººmË°m˺ÈÏÒ°ÓººªãËäËÓÈ
jÓÈËºmº¯«˰ãÒ
=
Λ
r
k
kk
g
1
λ
ºÒ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



 ¯Òä˯             °lÓºÎ˰ˆmº ¯È҂°mË}                                                   z
                   ˆº¯ºm ˆºË} ÓË}ºˆº¯º®
                          ¹¯«äº® ÓÈ ¹ãº°}º°ˆÒ Oxy 
                          ¹¯º²º«Ë® ˯ËÏ ÓÈÈãº
                                                                                                   O
                          }ºº¯ÒÓȈ «mã«Ëˆ°« ÒÓmÈ
                          ¯ÒÈӈөä ¹º¹¯º°ˆ¯ÈÓ°ˆ                                                          π                     y
                          mºä º¹Ë¯Èˆº¯È ¹ºmº¯ºˆÈ ÓÈ                             x
                          ‚ºã π ªˆÒ² ¯È҂°
                          mË}ˆº¯ºm mº}¯‚ º°Ò Oz 
                           cÒ° 
                                                                       èqxytvr
          
                   ° iã« º¹Ë¯Èˆº¯È ÒÁÁ˯ËÓÒ¯ºmÈÓÒ« m ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË
                          Á‚Ó}Ò® f(τ)  ÒäË Ò² ÓÈ (α , β )  ¹¯ºÒÏmºӂ  ã ­ºº ¹º¯«}È
                                nä˯өä ÒÓmȯÒÈӈөä ¹º¹¯º°ˆ¯ÈÓ°ˆmºä «mã«Ëˆ°« ãÒÓË®ÓÈ«
                                                                                λ 1τ    λ τ          λ nτ
                                º­ºãº}È °ºmº}‚¹Óº°ˆÒ ªãËäËӈºm mÒÈ ^ e         , e 2 , ... , e      ` Ë
                                λ1, λ 2 ,..., λ n ÓË}ºˆº¯©Ë¹º¹È¯Óº¯ÈÏãÒÓ©Ë}ºÓ°ˆÈӈ©
            
            
            
 ‘˺¯ËäÈ               lȈ¯ÒÈãÒÓˮӺºº¹Ë¯Èˆº¯È A ÏÈÈÓÓººmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆ
 
                        mË Λn °­ÈÏÒ°ºä {g1, g 2 ,..., g n } ˆºÈÒˆºã }ºˆºÈÒäËˈmÒ
                        
                                                         α11      ... α1r        α1, r +1      ...    α1n
                                                          ...     ... ...            ...       ...      ...
                                                         α r1     ... α rr       α r , r +1    ...    α rn
                                                                                                               
                                                          0       ...    0      α r +1, r +1   ...   α r +1, n
                                                          ...     ...    ...         ...       ...      ...
                                                          0       ...    0       α n, r + 1    ...    α nn
                        
                        }ºÈ ãÒÓË®ÓÈ« º­ºãº}È ¹ºäÓºÎ˰ˆmÈ ­ÈÏÒ°Ó©² ªãËäËӈºm
                        {g1, g 2 ,..., g r } ˰ˆ ÒÓmȯÒÈӈӺ˹º¹¯º°ˆ¯ÈÓ°ˆmºº¹Ë¯Èˆº¯È A 
        
  iº}ÈÏȈËã°ˆmº
   
   
          iº}ÈÎËä º°ˆÈˆºÓº°ˆ  ‚°ˆ  äȈ¯ÒÈ º¹Ë¯Èˆº¯È A  ÒäËˈ ‚}ÈÏÈÓÓ©® m
          Áº¯ä‚ãÒ¯ºm}ˈ˺¯Ëä©mÒ‘ºÈº­¯ÈÏã ­º®ãÒÓˮӺ®}ºä­ÒÓÈÒÒªãËäËӈºm
          {g1, g 2 ,..., g r }  ­‚ˈ ¹¯ÒÓÈãËÎȈ  Ò² ãÒÓˮӺ® º­ºãº}Ë ¹º°}ºã }‚ m °Òã‚
          º¹¯ËËãËÓÒ«  }ÈΩ® °ˆºã­Ë äȈ¯Ò© ãÒÓˮӺº º¹Ë¯Èˆº¯È °º°ˆÈmãËÓ ÒÏ
          }ºä¹ºÓËӈºmº­¯ÈÏȰººˆmˈ°ˆm‚ Ëº­ÈÏÒ°ÓººªãËäËӈÈ
                                             r
          jÓÈ˺mº¯«˰ãÒ              ∑ λ k g k ∈ Λ∗ ˆºÒ
                                           k =1