Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 198 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
αα
αα
11 12
21 22
0
0
+
+
º¯ÈÏÒËmä˯ӺË¹º¹¯º°¯ÈÓ°mºmË©¯Ë²
ä˯Ӻä¹¯º°¯ÈÓ°mË}mȯÈÓ©²äÈ¯Ò
αα
αα
11 12
21 22

ÈÈ

Éqtnptvn vzviéjntqn
A
33
ΛΛ
k tnrvzvévu ijoqxn ojljtv ujzéq
|np
A =
123
234
357
Ëjpzqnmv¹lévqutvnxzkvotj·ntqpÆ¹xtqz
¹ks¹nzx¹sqljttvnvzviéjntqnqt~nrzqktuqsqxíé~nrzqktu
ËÓÒË

° ° }ºº¯ÒÓÈÓºË ¹¯Ë°ÈmãËÓÒË ¹¯ºº¯ÈÏÈ ¹¯Ëº¯ÈϺmÈÓÒ«
yAx
=
˰
x
=
ξ
ξ
ξ
1
2
3
 È }ºº¯ÒÓÈÓºË ¹¯Ë°ÈmãËÓÒË º¯ÈÏÈ 
y
=
η
η
η
1
2
3
 ºÈ «¯º 
äÓºÎ˰mºªãËäËÓºm
x
È}Ò²º
Ax o
=
ÏÈÈË°«m}ºº¯ÒÓÈÓºä¹¯Ë°ÈmãËÓÒÒ
°Ò°Ë亮 ãÒÓˮө² ¯ÈmÓËÓÒ®
Ax
=
0
ÒãÒ
=++
=++
=++
0753
0432
032
321
321
321
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
 ºËË
¯ËËÓÒË }ºº¯º® ˰
1
2
1
3
2
1
=
λ
ξ
ξ
 |°È ÏÈ}ãÈËä º «¯º ãÒÓˮӺº
ºº¯ÈÎËÓÒ«
A
˰ ãÒÓË®ÓÈ« ººãº}È ªãËäËÓÈ
1
2
1
 Ò ¹º°}ºã}ºÓºÓË
°º°ºÒºã}ºÒÏÓãËmººªãËäËÓÈºÈÓÓºËºº¯ÈÎËÓÒËÓËÒÓË}ÒmÓºË
~ÈäËÒä º}ªºäÎËÏÈ}ãËÓÒ äºÎÓº ¹¯Ò®Ò ¹¯ÒÓ«m mº mÓÒäÈÓÒË º
r
g
r
g
123
234
357
123
012
000
23
==<
Ò°ãÈ°ºãºmäÈ¯Ò©ºº¯ÈÎËÓÒ«
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                α11 + α12        0
                                                   º­¯Èς ÒËm‚ä˯Ӻ˹º¹¯º°ˆ¯ÈÓ°ˆmºmˈ©¯Ë²
                                α 21 + α 22      0
                                                                                                    α11 α12
                             ä˯Ӻ乯º°ˆ¯ÈÓ°ˆmË}mȯȈө²äȈ¯Ò                                           
                                                                                                    α 21 α 22
            
            
            
 ~ÈÈÈ                Éqtnptvn vzviéj ntqn A  Λ3 → Λ3  k tnrvzvévu ijoqxn ojljtv ujzéq
 
                                            1 2 3
                         |np      A = 2 3 4 Ëjpzqnmv¹lévqutv nxzkvotj·ntqpƀ¹xtqz
                                        3 5 7
                         ¹ks¹nzx¹sqljttvnvzviéj ntqnqt~nrzqkt€uqsqxíé~nrzqkt€u
        
        
cËËÓÒË
        
                                                                           ˰ˆ 
° ‚°ˆ  }ºº¯ÒÓȈӺË ¹¯Ë°ˆÈmãËÓÒË ¹¯ºº­¯ÈÏÈ ¹¯Ëº­¯ÈϺmÈÓÒ« y = Ax
              ξ1                                                     η1
         x = ξ2  È }ºº¯ÒÓȈӺË ¹¯Ë°ˆÈmãËÓÒË º­¯ÈÏÈ  y = η2  ‘ºÈ «¯º 
             ξ3                                                      η3
                                           = o ÏÈÈˈ°«m}ºº¯ÒÓȈӺ乯˰ˆÈmãËÓÒÒ
        äÓºÎ˰ˆmºªãËäËӈºmxˆÈ}Ò²ˆº Ax
                                                                                          ξ1 + 2ξ 2 + 3ξ 3 = 0
                                                                                         
        °Ò°ˆË亮 ãÒÓˮө² ‚¯ÈmÓËÓÒ®                               A     x = 0  ÒãÒ 2ξ1 + 3ξ 2 + 4ξ 3 = 0  º­ËË
                                                                                          3ξ + 5ξ + 7ξ = 0
                                                                                          1       2      3
                                ξ1        1
        ¯Ë ËÓÒË }ºˆº¯º® ˰ˆ  ξ 2 = λ − 2  |ˆ° È ÏÈ}ã ÈËä ˆº «¯º ãÒÓˮӺº
                                ξ3        1
                                                                                                       1
        ºˆº­¯ÈÎËÓÒ« A  ˰ˆ  ãÒÓË®ÓÈ« º­ºãº}È ªãËäËӈÈ − 2  Ò ¹º°}ºã }‚ ºÓº ÓË
                                                                                                       1
        °º°ˆºÒˆˆºã }ºÒÏӂãËmººªãËäËӈȈºÈÓӺ˺ˆº­¯ÈÎËÓÒËÓËÒӞË}ˆÒmÓºË
          
          
          
        ~ÈäˈÒä ˆº } ªˆºä‚ ÎË ÏÈ}ã ËÓÒ  äºÎÓº ¹¯Ò®ˆÒ ¹¯ÒÓ«m mº mÓÒäÈÓÒË ˆº
                1 2 3                   1 2 3
         rg 2 3 4 = rg 0 1 2 = 2 < 3 Ò°ãȰˆºã­ºmäȈ¯Ò©ºˆº­¯ÈÎËÓÒ«
            3 5 7      0 0 0