Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 191 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
È
det ( ) det det detSS S S E
−−
===
11
1
 º º}ºÓÈËãÓº ¹ºãÈËä º
det
det
AA
gg
=

vã˰mÒËº}ÈÏÈÓº
|äËÒäÓÈ}ºÓËºm°Òã˺¯Ëä©mãºäÈÏÒ°ËÓãËmº®º¹Ë¯Èº¯
ËÒäËÓãËmäÈ¯ÒÈËÒÓÒÓ©®º¹Ë¯Èº¯ËÒÓÒÓ
|ãȰ
ÏÓÈ
ËÓÒ®ãÒÓˮӺ
ºº¹Ë¯Èº¯È
¯È}«ãÒÓˮө®º¹Ë¯Èº¯Ë®°mÒ®mãÒÓˮӺä¹¯º°¯ÈÓ°mË}È}ÓË}º
º¯ºËººËÓÒË¹ºÓ«Ò«ÁÓ}ÒÒ˰˰mËÓÓº¯È°°äº¯Ëmº¹¯º°ººãȰÒº¹¯Ë
ËãËÓÒ«ÒºãȰÒÏÓÈËÓÒ®ãÒÓˮө²º¹Ë¯Èº¯ºm
sȹºäÓÒä º °ºãȰӺ º¹¯ËËãËÓÒ  ¹º visjxzí otj·ntqp sqtnptvmv
vwnéjzvéj
A
¹ºÓÒäÈË°«äÓºÎ˰mºº¯ÈϺmm°Ë²ªãËäËÓºm
Λx
º˰ªãËäËÓºm
È
Ax

|ËmÒÓº º ã« ãºº ãÒÓˮӺº º¹Ë¯Èº¯È ˺ ºãȰº¹¯ËËãËÓÒ«
°ºm¹ÈÈË°
Λ
|mËÓÈmº¹¯º°Ùïzvwénlxzjks¹nzxvivpvisjxzotj·ntqpsqtnptvmv
vwnéjzvéj"µÈË
˺¯ËäÈ

°
A
ãÒÓˮө®º¹Ë¯Èº¯
Ë®°m
Ò®mãÒÓˮӺä¹¯º°¯ÈÓ
°mË
Λ
ºÈ
°
 lÓºÎ˰mºªãËäËÓºm
,
Ax
Λ
x
˰¹º¹¯º°¯ÈÓ°mºm
Λ

°
 p°ãÒ }¯ºäË º
º
n
Λ=Λ
° ÈÏÒ°ºä
},...,,{
21
n
ggg
 º ¯ÈÏä˯
Óº°ªºº¹º ¹¯º°¯ÈÓ°mÈ¯ÈmÓÈ
rg
A
g
iº}ÈÏÈËã°mº
°
Λ
˰äÓºÎ˰mºªãËäËÓºmmÒÈ
Ax
Ò¹°
Λ
21
,
yy
ºÈ°˰
m
Λ
1
x
Ò
Λ
2
x
È}ÒËº
Ax y
11
=
Ò
Ax y
22
=
º°mº®°mãÒÓˮӺ°Ò
º¹Ë¯Èº¯È
A
ÒäËËä
Λ+=+=+
)(
ˆˆˆ
212121
xxAxAxAyy
 kÓÈãºÒÓº
Λ==
)(
ˆˆ
xAxAy
λλλ
Ò¹ººä
Λ
˰¹º¹¯º°¯ÈÓ°mº
Λ

°˹˯
n
Λ=Λ
°ÈÏÒ°ºä
{, ,..., }gg g
n
12
º°}ºã}}ÈΩ®ªãËäËÓ
Λ
x
˰ãÒÓË®ÓÈ«}ºäÒÓÈÒ«ÈÏÒ°Ó©²ªãËäËÓºmº°ººmË°mËÓÓºm°ÒããÒ
ÓˮӺ°Ò}ÈΩ®ªãËäËÓÒÏºãȰÒÏÓÈËÓÒ®
A
˰ÈÎËãÒÓË®ÓÈ«}ºäÒ
cÈÏËã 
ÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



                              −1                        −1
          È det ( S              S ) = det S                det S = det E = 1  ˆº º}ºÓȈËã Óº ¹ºã‚ÈËä ˆº
               det A   g′
                             = det A     g
     
     vã˰ˆmÒ˺}ÈÏÈÓº
       
       |ˆäˈÒä ÓÈ}ºÓË ˆº m °Òã‚ ˆËº¯Ëä©mã ­ºä­ÈÏÒ°ËӂãËmº®º¹Ë¯Èˆº¯
­‚ˈÒäˈ ӂãËm‚ äȈ¯Ò‚ÈËÒÓÒÓ©®º¹Ë¯Èˆº¯ËÒÓÒӂ 
                
                
                
                
|­ãȰˆ ÏÓÈËÓÒ®ãÒÓˮӺºº¹Ë¯Èˆº¯È
                
                
                
      ‘¯È}ˆ‚«ãÒÓˮө®º¹Ë¯Èˆº¯Ë®°ˆm‚ Ò®mãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË}È}ÓË}º
ˆº¯ºËº­º­ËÓÒ˹ºÓ«ˆÒ«Á‚Ó}ÒÒ˰ˆË°ˆmËÓÓº¯È°°äºˆ¯Ëˆ mº¹¯º°º­º­ãȰˆÒº¹¯Ë
ËãËÓÒ«Òº­ãȰˆÒÏÓÈËÓÒ®ãÒÓˮө²º¹Ë¯Èˆº¯ºm
      
      sȹºäÓÒä ˆº °ºãȰӺ º¹¯ËËãËÓÒ   ¹º visjxzí otj·ntqp sqtnptvmv
vwnéjzvéj A  ¹ºÓÒäÈˈ°« äÓºÎ˰ˆmº º­¯ÈϺm m°Ë² ªãËäËӈºm x ∈ Λ  ˆº ˰ˆ  ªãËäËӈºm
       
mÒÈ Ax
       
       |ËmÒÓº ˆº ã« ã ­ºº ãÒÓˮӺº º¹Ë¯Èˆº¯È ˺ º­ãȰˆ  º¹¯ËËãËÓÒ«
°ºm¹ÈÈˈ° Λ|ˆmˈÓÈmº¹¯º°Ùïzvwénlxzjks¹nzxvivpvisjxzotj·ntqpsqtnptvmv
vwnéjzvéj"µÈˈ
       
       
 ‘˺¯ËäÈ                ‚°ˆ  A ãÒÓˮө®º¹Ë¯Èˆº¯Ë®°ˆm‚ Ò®mãÒÓˮӺ乯º°ˆ¯ÈÓ
 
                          °ˆmË Λ ‘ºÈ
                          
                                                            , ∀x ∈ Λ ˰ˆ ¹º¹¯º°ˆ¯ÈÓ°ˆmºm Λ 
                                ° lÓºÎ˰ˆmºªãËäËӈºm Ax
                                
                                ° p°ãÒ }¯ºäË ˆºº Λ = Λn  ° ­ÈÏÒ°ºä {g1, g 2 ,..., g n }  ˆº ¯ÈÏä˯
                                         Óº°ˆ ªˆºº¹º¹¯º°ˆ¯ÈÓ°ˆmȯÈmÓÈ rg A                                        
                                                                                                                     g
        
  iº}ÈÏȈËã°ˆmº
     

                                                      Ò¹‚°ˆ  y , y ∈ Λ∗ ‘ºÈ°‚Ë°ˆ
           ‚°ˆ  Λ∗ ˰ˆ äÓºÎ˰ˆmºªãËäËӈºmmÒÈ Ax           1 2
                                                  = y Ò Ax
           m‚ ˆ x1 ∈ Λ Ò x 2 ∈ Λ ˆÈ}Òˈº Ax         = y º°mº®°ˆm‚ãÒÓˮӺ°ˆÒ
                                                   1  1       2 2

           º¹Ë¯Èˆº¯È                A        ÒäËËä             y1 + y 2 = Aˆ x1 + Aˆ x 2 = Aˆ ( x1 + x 2 ) ∈ Λ∗                kÓÈãºÒÓº
                                                ∗                     ∗
               λ y = λ Aˆ x = Aˆ (λ x ) ∈ Λ Ò¹ºˆºä‚ Λ ˰ˆ ¹º¹¯º°ˆ¯ÈÓ°ˆmº Λ 
           


           ‚°ˆ ˆË¹Ë¯  Λ = Λn °­ÈÏÒ°ºä {g1 , g 2 ,..., g n } º°}ºã }‚}ÈΩ®ªãËäËӈ x ∈ Λ 
           ˰ˆ ãÒÓË®ÓÈ«}ºä­ÒÓÈÒ«­ÈÏÒ°Ó©²ªãËäËӈºmˆº°ººˆmˈ°ˆmËÓÓºm°Òã‚ãÒ
           ÓˮӺ°ˆÒ}ÈΩ®ªãËäËӈÒϺ­ãȰˆÒÏÓÈËÓÒ® A ˰ˆ ˆÈÎËãÒÓË®ÓÈ«}ºä­Ò