Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 215 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
|¹Ë¯ÈÒÒ°ãÒÓˮөäÒÁÓ}ÒºÓÈãÈäÒ
cȰ°äÈ¯ÒmÈ«ãÒÓˮө®ÁÓ}ÒºÓÈã©}È}ȰÓ©®°ãÈ®ãÒÓˮӺºº¹Ë¯Èº¯È
mmËËäÓÈÒ²äÓºÎ˰mËÈÓÈãºÒÓº¹º¹Ë¯ÈÒÒ°ãºÎËÓÒ«ÒäÓºÎËÓÒ«ÓÈÒ°ãº
|¹¯ËËãËÓÒË

fyuuvp ãÒÓˮө²ÁÓ}ÒºÓÈãºm
fx()
Ò
gx()
ÓÈÏ©mÈË°«ÁÓ}ÒºÓÈã
sx()
°Èm«Ò®}ÈκäªãËäËÓãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
Λx
m°º
ºmË°mÒËÒ°ãº
fx
()
+g x
()

ËääÈ

vääÈ m² ãÒÓˮө² ÁÓ}ÒºÓÈãºm «mã«Ë°« ãÒÓˮөä ÁÓ}Òº
ÓÈãºä
iº}ÈÏÈËã°mº
°
Λ
zyx ,,
Ò
zyx
µλ
+=
È
sx f x gx() () ()
=+
ºÈ
sy z f y z gy z
fy fz gy gz
fy gy fz gz
sy sz
()( )( )
() () () ()
(()())(()())
() () .
λµ λµ λµ
λµλµ
λµ
λµ
+= + + + =
=+++=
=+++=
=+
ËääÈº}ÈÏÈÓÈ
|¹¯ËËãËÓÒË

ËysnkuÁÓ}ÒºÓÈãºäÓÈÏ©mÈË°«ÁÓ}ÒºÓÈã
ox()
°Èm«Ò®}ÈÎ
ºäªãËäËÓãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
Λx
m°ººmË°mÒËÒ°ãº
0

|¹¯ËËãËÓÒË

nÓ}ÒºÓÈãºä wévzqkvwvsvtu sqtnptvuy ÁÓ}ÒºÓÈã
fx
()

ÓÈÏ©mÈË°«ÁÓ}ÒºÓÈã°Èm«Ò®}ÈκäªãËäËÓãÒÓˮӺº ¹¯º
°¯ÈÓ°mÈ
Λx
m°ººmË°mÒË
Ò°ãº
fx()

j°²º« ÒÏ º¹¯ËËãËÓÒ®  °ãËË º ÓãËmº® Ò ¹¯ºÒmº¹ºãºÎÓ©®
ÁÓ}ÒºÓÈã©«mã«°«ãÒÓˮөäÒÒº
∀∈
x
Λ
°¹¯ÈmËãÒm©¯ÈmËÓ°mÈ
fx gx gx fx
f x gx hx f x gx hx
fx ox fx fx fx ox
() () () () ;
( ( ) ( )) ( ) ( ) ( ( ) ( )) ;
() () () ; () ( ()) () .
+=+
++=++
+= + =
cÈÏËã 
ÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



|¹Ë¯ÈÒÒ°ãÒÓˮөäÒÁ‚Ó}ÒºÓÈãÈäÒ
         
         
         
         cȰ°äȈ¯ÒmÈ«ãÒÓˮө®Á‚Ó}ÒºÓÈã©}È}ȰˆÓ©®°ã‚È®ãÒÓˮӺºº¹Ë¯Èˆº¯È
mmËËäÓÈÒ²äÓºÎ˰ˆmË ÈÓÈãºÒÓº¹ º¹Ë¯ÈÒÒ°ãºÎËÓÒ«Ò‚äÓºÎËÓÒ«ÓÈÒ°ãº
         
         
         
 |¹¯ËËãËÓÒË   fyuuvp ãÒÓˮө² Á‚Ó}ÒºÓÈãºm f ( x )  Ò g ( x ) ÓÈÏ©mÈˈ°« Á‚Ó}ÒºÓÈã
 
                s( x ) °ˆÈm«Ò®}Èκ䂪ãËäËӈ‚ãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ x ∈ Λ m°º
                           ºˆmˈ°ˆmÒËҰ㺠f ( x ) + g ( x ) 
               
               
               
    ËääÈ                 v‚ääÈ m‚² ãÒÓˮө² Á‚Ó}ÒºÓÈãºm «mã«Ëˆ°« ãÒÓˮөä Á‚Ó}Òº
                    ÓÈãºä
           
     iº}ÈÏȈËã°ˆmº
      
         ‚°ˆ x, y, z ∈ Λ Ò x = λy + µz È s ( x ) = f ( x ) + g ( x ) ˆºÈ
         
                                           s( λ y + µz ) = f ( λ y + µ z ) + g ( λ y + µ z ) =
                                                         = λ f ( y) + µ f ( z) + λ g ( y) + µ g ( z) =
                                                                                                             
                                                         = λ ( f ( y ) + g ( y )) + µ ( f ( z ) + g ( z )) =
                                                         = λ s ( y ) + µ s( z ) .
           
      ËääȺ}ÈÏÈÓÈ
               
               
               
    |¹¯ËËãËÓÒË           Ëysnk€uÁ‚Ó}ÒºÓÈãºäÓÈÏ©mÈˈ°«Á‚Ó}ÒºÓÈã o( x ) °ˆÈm«Ò®}ÈÎ
    
                           ºä‚ªãËäËӈ‚ãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ x ∈ Λ m°ººˆmˈ°ˆmÒËÒ°ãº0
               
               
    |¹¯ËËãËÓÒË           n‚Ó}ÒºÓÈãºä wévzqkvwvsv t€u sqtnptvuy Á‚Ó}ÒºÓÈã‚ f ( x ) 
                    ÓÈÏ©mÈˈ°« Á‚Ó}ÒºÓÈã °ˆÈm«Ò® }ÈÎºä‚ ªãËäËӈ‚ ãÒÓˮӺº ¹¯º
                           °ˆ¯ÈÓ°ˆmÈ x ∈ Λ m°ººˆmˈ°ˆmÒËҰ㺠f ( x ) 
               
               
j°²º« ÒÏ º¹¯ËËãËÓÒ®  °ãË‚ˈ ˆº ӂãËmº® Ò ¹¯ºˆÒmº¹ºãºÎÓ©®
Á‚Ó}ÒºÓÈã©«mã« ˆ°«ãÒÓˮөäÒÒˆº ∀x ∈ Λ °¹¯ÈmËãÒm©¯ÈmËÓ°ˆmÈ

                                        f ( x) + g( x) = g( x) + f ( x)               ;
                                      ( f ( x ) + g ( x )) + h( x ) = f ( x ) + ( g ( x ) + h( x )) ; 
                                       f ( x ) + o( x ) = f ( x ) ; f ( x ) + ( − f ( x )) = o( x ) .