Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 213 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
Ë m˯Ӻ Ò ã« }Èκº ªãËäËÓÈ
n
x
Λ
 ºÈ ÒÏ ãËää©  °ãËË º
α
k
f
k
k
n
f
AO

=
=
0

sÈ}ºÓËm©¹ºãÓÒm¹Ë¯Ë²º}¹¯ºÒÏmºãÓºäÈÏÒ°
},...,,{
21 n
ggg
¹ºãÒä
αα
α
k
g
k
k
n
k
f
k
n
k
k
ff f
k
n
ASAS
SASSASSAS
(
)
(

...
)
=
=
−−
=
∑∑
==
==
0
1
0
11 1
0

== =
==
=
=
∑∑
αα
k
f
k
k
n
k
f
k
k
n
fg
SAS S A S
SOSO
(
)(
)

.
1
0
1
0
1
˺¯ËäÈº}ÈÏÈÓÈ
~ÈäËÈÓÒË
: ˺¯ËäÈÈäÒãºÓÈzªãÒÈ}ÎËm˯ÓÈÒã«ãÒÓˮө²º¹Ë¯Èº¯ºmÒÏ
°º°mËÓÓ©²mË}º¯ºm}ºº¯©²ÈÏÒ°º¯ÈϺmÈÓËÈË°«
ÒÓˮөËÁÓ}
ÒºÓÈã©
cȰ°äº¯Òä °¹ËÒÈãÓ©® °ãÈ® ãÒÓˮӺº º¹Ë¯Èº¯È È ˺ ºãȰ
ÏÓÈËÓÒ® °ºË¯ÎÒ°« m ºÓºä˯Ӻä ãÒÓˮӺä ¹¯º°¯ÈÓ°mË ÒϺ亯ÁÓºä äÓºÎ˰m
mË˰mËÓÓ©² Ò°Ëã È}ºº ¯ºÈ ÏÈmÒ°Ò亰Ò °ãË« }ãȰ°ÒÁÒ}ÈÒÒ mmËËÓÓº® m
¹°ãËËºÓº°Ò}ÁÓ}ÒºÓÈãÈäsȹºäÓÒäÈÓÓºË¯ÈÓËË
|¹¯ËËãËÓÒË

°}Èκä ªãËäËÓ ãÒÓˮӺº ¹¯º°¯ÈÓ°mÈ
Λ
x
¹º°ÈmãËÓºm
°ººmË°mÒËºÓºÏÓÈÓºº¹¯ËËã«ËäºËÒ°ãºººÏÓÈÈËäºË
)(
xf .
º
Èºmº¯«ºm
Λ
ÏÈÈÓ{ytr|qvtjs
)(xf

cÈÏËã 
ÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



                 ˈ m˯Ӻ Ò ã« }Èκº ªãËäËӈÈ x ∈ Λn  ‘ºÈ ÒÏ ãËää©  °ãË‚ˈ ˆº
                     n
                 ∑αk            A       = O
                                     k
                                                    
                                     f          f
                 k =0
                 
                 
                 sÈ}ºÓËm©¹ºãÓÒm¹Ë¯Ë²º}¹¯ºÒÏmºã Ӻ䂭ÈÏÒ°‚ {g1, g 2 ,..., g n } ¹ºã‚Òä
                 
                 
                            n                        n
                           ∑ α k A             = ∑αk ( S
                                                                     −1
                                                                              A
                                            k
                                                                                           S )k =
                                            g                                          f
                           k =0                     k =0
                                                      n
                                                                                                                                                                     
                                                = ∑αk ( S
                                                                         −1                                −1                               −1
                                                                              A           S       S            A            S ... S            A           S )=
                                                                                       f                              f                               f
                                                    k =0
                                                                                               
                                                     n                                                                    n
                                                = ∑αk ( S                                                            ( ∑ α k A
                                                                     −1                                         −1
                                                                              A
                                                                                   k                                                k
                                                                                           S )= S                                           ) S =
                                                                                   f                                                    f
                                             k =0                                                              k =0                                
                                                           −1
                                                = S             O            S = O                   .
                                                                     f                         g
                 
                 
     ‘˺¯ËäȺ}ÈÏÈÓÈ
      
      
      
~ÈäËÈÓÒË:                  ˆËº¯ËäÈ€ÈäÒ㠈ºÓÈzªãÒˆÈ}ÎËm˯ÓÈÒã«ãÒÓˮө²º¹Ë¯Èˆº¯ºmÒÏ
                            °º­°ˆmËÓÓ©²mË}ˆº¯ºm}ºˆº¯©²­ÈÏÒ°º­¯ÈϺmȈ ÓË‚Èˈ°«
             
             
             
             
ÒÓˮөËÁ‚Ó}ÒºÓÈã©
          
          
          
          cȰ°äºˆ¯Òä °¹ËÒÈã Ó©® °ã‚È® ãÒÓˮӺº º¹Ë¯Èˆº¯È }ºÈ ˺ º­ãȰˆ 
ÏÓÈËÓÒ® °º˯Î҈°« m ºÓºä˯Ӻä ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË ÒϺ亯ÁÓºä äÓºÎ˰ˆm‚
m˝˰ˆmËÓÓ©² Ò°Ëã ‘È}ºº ¯ºÈ ÏÈmÒ°Ò亰ˆÒ °ãË‚« }ãȰ°ÒÁÒ}ÈÒÒ mmËËÓÓº® m
¹°ãË‚ˈºˆÓº°Òˆ }Á‚Ó}ÒºÓÈãÈäsȹºäÓÒäÈÓӺ˯ÈÓËË
          
          
          
 |¹¯ËËãËÓÒË    ‚°ˆ  }ÈÎºä‚ ªãËäËӈ‚ ãÒÓˮӺº ¹¯º°ˆ¯ÈÓ°ˆmÈ x ∈ Λ  ¹º°ˆÈmãËÓº m
          °ººˆmˈ°ˆmÒ˺ӺÏÓÈÓºº¹¯ËËã«ËäºËҰ㺺­ºÏÓÈÈËäºË f (x ) .‘º
                 Ⱥmº¯«ˆˆºm Λ ÏÈÈÓ{ytr|qvtjs f (x )