Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 212 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
°m
n
Λ
}ºº¯ÒÓÈÓ©® °ºãË º¯ÈÏÈ °m«ÏÈÓ ° }ºº¯ÒÓÈÓ©ä °ºãºä
¹¯ºº¯ÈÏÈ
η
η
η
αα α
αα α
αα α
ξ
ξ
ξ
1
2
11 12 1
21 22 2
12
1
2
...
...
...
... ... ... ...
...
...
n
n
n
nn nn
n
=
jÏ ˺¯Ëä©  z¯Èä˯È °ãËË º ã« ÏÈÈÓÓºº }ºº¯ÒÓÈÓºº °ºãÈ
ªãËäËÓÈº¯ÈÏÈ ªÈ °Ò°ËäÈ ãÒÓˮө² ¯ÈmÓËÓÒ®  }ºº¯º® ÓËÒÏm˰Ó©äÒ
«mã«°« }ºä¹ºÓËÓ© °ºãÈ ªãËäËÓÈ¹¯ºº¯ÈÏÈ ãÒº Ë Ó˰ºmä˰Óº®
ªãËäËÓ¹¯ºº¯ÈÏÓË°˰mËãÒºËÒäË°ºãȰӺ°ã˰mÒ
ÓËËÒÓ°mËÓÓºË¯ËËÓÒËªãËäËÓ¹¯ºº¯ÈÏº¹¯ËËã«Ë°«Ó˺ӺÏÓÈÓº
˺¯ËäÈº}ÈÏÈÓÈ
|¹¯ËËãËÓÒË

v˹ËÓ }mȯÈÓº® äÈ¯Ò©
Q
°ÓȯÈãÓ©ä ¹º}ÈÏÈËãËä
k
2
ÓÈÏ©mÈË°«¹¯ºÒÏmËËÓÒË
k
°ºäÓºÎÒËãË®mÒÈ
Q
rËäÈ}ÎË°Ò
Èº
QQ
1
=
Ò
QE
0
=

˺¯ËäÈ

ÈäÒãºÓÈ
zªãÒ
lÈ¯ÒÈãÒÓˮӺºº¹Ë¯Èº¯È
A
m
n
Λ
ºmãËmº¯«Ë˺²È¯È}˯Ò
°Ò˰}ºä¯ÈmÓËÓÒ
iº}ÈÏÈËã°mº
iº}ÈÎËä ÈÓÓ˺¯Ëäm¹¯Ë¹ºãºÎËÓÒÒ º °º°mËÓÓ©Ë mË}º¯©
º¹Ë¯Èº¯È
A
º¯ÈÏm
n
Λ
ÈÏÒ°
},...,,{
21
n
fff

° ÈÓÓ©® ãÒÓˮө® º¹Ë¯Èº¯
A
m ªºä ÈÏÒ°Ë ÒäËË äÈ¯Ò
A
f
Ò
²È¯È}˯ҰÒ˰}ºË ¯ÈmÓËÓÒË
αλ
k
k
k
n
=
=
0
0
 ºÈ m °Òã ãÒÓˮӺ°Ò
A
ã«
°º°mËÓÓºº mË}º¯È
f
 °ººmË°m˺ °º°mËÓÓºä ÏÓÈËÓÒ
λ
 ÒäËËä
°äÏÈÈ
(
)(
)(
(
...(
)...))
()( ) .
αα α
αλ αλ
k
f
k
k
n
k
f
k
k
n
k
ff f
k
n
k
k
k
n
k
k
k
n
Af Af AA Af
fffo
== =
==
∑∑
∑∑
== =
====
00 0
00
0
sº¹º°}ºã}ªº°ººÓºËÓÒËm˯Ӻã«m°Ë²ÈÏÒ°Ó©²mË}º¯ºmººÓº
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          ‚°ˆ  m Λn  }ºº¯ÒÓȈө® °ˆºã­Ë º­¯ÈÏÈ °m«ÏÈÓ ° }ºº¯ÒÓȈөä °ˆºã­ºä
          ¹¯ºº­¯ÈÏÈ
                                                         η1      α11 α12                ... α1n             ξ1
                                                         η2      α 21 α 22              ... α 2 n           ξ2
                                                             =                                                  
                                                         ...      ...  ...              ...       ...       ...
                                                         ηn      α n1 α n 2             ... α nn            ξn 
          
          jÏ ˆËº¯Ëä©  z¯ÈäË¯È  °ãË‚ˈ ˆº ã« ÏÈÈÓÓºº }ºº¯ÒÓȈӺº °ˆºã­È
          ªãËäËӈȺ­¯ÈÏÈ ªˆÈ °Ò°ˆËäÈ ãÒÓˮө² ‚¯ÈmÓËÓÒ® ‚ }ºˆº¯º® ÓËÒÏm˰ˆÓ©äÒ
          «mã« ˆ°« }ºä¹ºÓËӈ© °ˆºã­È ªãËäËӈȹ¯ºº­¯ÈÏÈ ãÒ­º ­‚ˈ Ó˰ºmä˰ˆÓº®
           ªãËäËӈ¹¯ºº­¯ÈÏ ÓË °‚Ë°ˆm‚ˈ  ãÒ­º ­‚ˈ Òäˈ  °ºãȰӺ °ã˰ˆmÒ  
          ÓËËÒÓ°ˆmËÓÓºË¯Ë ËÓÒË ªãËäËӈ¹¯ºº­¯ÈϺ¹¯ËËã«Ëˆ°«Ó˺ÓºÏÓÈÓº 
     
     ‘˺¯ËäȺ}ÈÏÈÓÈ
            
            
 |¹¯ËËãËÓÒË             vˆË¹ËÓ          }mȯȈӺ® äȈ¯Ò© Q  ° ÓȈ‚¯Èã Ó©ä ¹º}ÈÏȈËãËä k ≥ 2 
 
                          ÓÈÏ©mÈˈ°«¹¯ºÒÏmËËÓÒËk°ºäÓºÎ҈ËãË®mÒÈ Q r‚ËäˆÈ}Î˰Ò
                                              1                        0
                          ˆÈˆ ˆº Q            = Q Ò Q                = E 
            
            
 ‘˺¯ËäÈ                 lȈ¯ÒÈãÒÓˮӺºº¹Ë¯Èˆº¯È A m Λn ‚ºmãˈmº¯«ËˆËº²È¯È}ˆË¯Ò
 
                          °ˆÒ˰}ºä‚‚¯ÈmÓËÓÒ 
  €ÈäÒ㈺ÓÈ
 zªãÒ 
        
  iº}ÈÏȈËã°ˆmº
          
          
          iº}ÈÎËä ÈÓӂ  ˆËº¯Ëä‚ m ¹¯Ë¹ºãºÎËÓÒÒ ˆº °º­°ˆmËÓÓ©Ë mË}ˆº¯©
                º¹Ë¯Èˆº¯È A º­¯Èς ˆm Λn ­ÈÏÒ° { f1, f 2 ,..., f n } 
                
                ‚°ˆ  ÈÓÓ©® ãÒÓˮө® º¹Ë¯Èˆº¯ A  m ªˆºä ­ÈÏÒ°Ë ÒäËˈ äȈ¯Ò‚                                                       A        Ò
                                                                                                                                                    f
                                                                       n
                ²È¯È}ˆË¯Ò°ˆÒ˰}ºË ‚¯ÈmÓËÓÒË                        ∑ α k λk = 0  ‘ºÈ m °Òã‚ ãÒÓˮӺ°ˆÒ                              A  ã«
                                                                      k =0
                °º­°ˆmËÓÓºº mË}ˆº¯È f °ººˆmˈ°ˆm‚ Ëº °º­°ˆmËÓÓºä‚ ÏÓÈËÓÒ  λ ÒäËËä
                 °äÏÈÈ‚ 
                
                     n                             n                                n
                  (∑ αk       A       ) f = ∑ α k ( A                 f ) = ∑ α k ( A                    ( A        ...( A
                                   k                              k
                                                                                                                                          f )...)) =
                                   f                              f                                     f           f                 f
                   k =0                           k =0                            k =0
                                                    n                         n
                                                                                                                                                        
                                              = ∑ α k (λ     k
                                                                 f ) = (∑ αk λ ) f = 0 f = o  k
                                                                                                                                  .
                                                  k =0                       k =0
                
                
                sº¹º°}ºã }‚ªˆº°ººˆÓº ËÓÒËm˯Ӻã«m°Ë²­ÈÏÒ°Ó©²mË}ˆº¯ºmˆººÓº­‚