Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 211 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
°ãºmÒË
1
P
ºËmÒÓº¹º°}ºã}¹º¹¯º°¯ÈÓ°mº
Λ
ÓËÓãËmºË
˺¯ËäÈº}ÈÏÈÓÈ
È}Òä º¯ÈϺä ¯ÈÏä˯Ӻ° ÒÓmȯÒÈÓÓºº °º°mËÓÓºº ¹º¹¯º°¯ÈÓ°mÈ
Λ

ºmËÈ˺ °º°mËÓÓºä ÏÓÈËÓÒ
λ
0
}¯ÈÓº°Ò
k
 äºÎË º}ÈÏÈ°« äËÓË
k

ºÒãã°¯Ò¯Ë
ÈÈ

ËÓÒË
Ëjpzq xvixzknttn otj·ntq¹ q xvixzknttn knrzvé vwnéjzvéj lnp
xzkyínmvkwévxzéjtxzknlkyunét}xzvsi|vkqojljttvmvujzéq|np
11
01

sȲºÒä°º°mËÓÓ©ËÏÓÈËÓÒ«
det ( )
11
01
10
2
=− =
λ
λ
λ

º ˰
λ

=
 Ò }¯ÈÓº° °º°mËÓÓºº ÏÓÈËÓÒ«
k
 sÈ®Ëä ˹˯
°º°mËÓÓ©ËmË}º¯©
0
1
0
0
00
10
2
1
µ
ξ
ξ
== x

∀≠
µ
0

È}Òäº¯ÈϺä¹ºãÈËäºÈÓÓ©®ãÒÓˮө®º¹Ë¯Èº¯ÒäËËºÓº
ä˯ӺË ÒÓmȯÒÈÓÓºË °º°mËÓÓºË ¹º¹¯º°¯ÈÓ°mº
1)dim(
=Λ=
m

°ººmË°mËË°º°mËÓÓºäÏÓÈËÓÒ
λ
= 1
}¯ÈÓº°Ò
˺¯ËäÈ

ÒÓˮө®º¹Ë¯Èº¯
A
m
n
Λ
ÒäËËÓãËmºË°º°mËÓÓºËÏÓÈËÓÒËº
ÈÒºã}ººÈ}ºÈº¹Ë¯Èº¯
A
ÓË«mã«Ë°«mÏÈÒäÓºº ÓºÏÓÈ
Ó©ä
iº}ÈÏÈËã°mº
ÒÓˮө®º¹Ë¯Èº¯
A
ÒäËËm
n
Λ
°º°mËÓÓºËÏÓÈËÓÒË¯ÈmÓºËÓãºÈÒ
ºã}º ºÈ È ˺ äÈ¯ÒÈ m©¯ºÎËÓÓÈ« º ˰ m ãºä ÈÏÒ°Ë
det
A = 0

cÈÏËã 
ÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



        °ãºmÒË 1 ≤ P ºËmÒÓº¹º°}ºã }‚¹º¹¯º°ˆ¯ÈÓ°ˆmº Λ∗ ÓËӂãËmºË
        
        
     ‘˺¯ËäȺ}ÈÏÈÓÈ
          
          
          
         ‘È}Òä º­¯ÈϺä ¯ÈÏä˯Ӻ°ˆ  ÒÓmȯÒÈӈӺº °º­°ˆmËÓÓºº ¹º¹¯º°ˆ¯ÈÓ°ˆmÈ Λ∗ 
ºˆmËÈ Ëº °º­°ˆmËÓÓºä‚ ÏÓÈËÓÒ  λ 0  }¯ÈˆÓº°ˆÒ k  äºÎˈ º}ÈÏȈ °« äËÓ Ë k 
ˆºÒãã °ˆ¯Ò¯‚ˈ
         
         
 ~ÈÈÈ        Ëjpzq xvixzkntt€n otj·ntq¹ q xvixzkntt€n knrzvé€ vwnéjzvéj lnp
         xzkyínmv k wévxzéjtxzkn lkyunét€} xzvsi|vk q ojljttvmv ujzéq|np
 
                              1 1
                                   
                              0 1
 
                          
 
                          
 
                         
 cËËÓÒË                sȲºÒä°º­°ˆmËÓÓ©ËÏÓÈËÓÒ«
                          
                                                                        1− λ  1
                                                                det               = (1 − λ ) 2 = 0 
                                                                         0   1− λ
                          
                         ˆº ˰ˆ  λ= Ò }¯ÈˆÓº°ˆ  °º­°ˆmËÓÓºº ÏÓÈËÓÒ« k                                         sÈ®Ëä ˆË¹Ë¯ 
                          °º­°ˆmËÓÓ©ËmË}ˆº¯©
                          
                                                         0 1         ξ1   0                               1
                                                                        =               ⇒       x=µ             ∀µ ≠ 0 
                                                         0 0         ξ2   0                               0
                          
                          ‘È}Ò亭¯ÈϺ乺ã‚ÈË䈺ÈÓÓ©®ãÒÓˮө®º¹Ë¯Èˆº¯ÒäËˈºÓº
                          ä˯ӺË ÒÓmȯÒÈӈӺË °º­°ˆmËÓÓºË ¹º¹¯º°ˆ¯ÈÓ°ˆmº m = dim( Λ∗ ) = 1 
                          °ººˆmˈ°ˆm‚ Ë˰º­°ˆmËÓÓºä‚ÏÓÈËÓÒ  λ = 1 }¯ÈˆÓº°ˆÒ
           
           
           
 ‘˺¯ËäÈ                 ÒÓˮө®º¹Ë¯Èˆº¯ A m Λn ÒäËˈӂãËmºË°º­°ˆmËÓÓºËÏÓÈËÓÒˈº
 
                          ÈÒˆºã }ºˆºÈ}ºÈº¹Ë¯Èˆº¯ A ÓË«mã«Ëˆ°«mÏÈÒäÓººÓºÏÓÈ
                          Ó©ä
        
  iº}ÈÏȈËã°ˆmº
   
           ÒÓˮө®º¹Ë¯Èˆº¯ A ÒäËˈm Λn °º­°ˆmËÓÓºËÏÓÈËÓÒ˯ÈmÓºËӂã ˆºÈÒ
           ˆºã }º ˆºÈ }ºÈ ˺ äȈ¯ÒÈ m©¯ºÎËÓÓÈ« ˆº ˰ˆ  m ã ­ºä ­ÈÏÒ°Ë
            det A = 0