Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 209 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
sººÈ°¹¯ÈmËãÒmº¯ÈmËÓ°mº

()BA f B f
=
λ
Èm°Òã}ºääÒ¯Ë亰ÒÒãÒ
ÓˮӺ°Òº¹Ë¯Èº¯ºm
A
Ò
B
Ëm˯ӺÒ
(
)(
)
ABf Bf=
λ
¹¯Ò
Λ
f

º°ãËÓËË¯ÈmËÓ°mººÏÓÈÈËº
ΛfB
ˆ
¹¯Ò
Λf
º˰
Λ
ÒÓmȯÒ
ÈÓÓºË¹º¹¯º°¯ÈÓ°mºº¹Ë¯Èº¯È
B

vã˰mÒËº}ÈÏÈÓº
˺¯ËäÈ

vº°mËÓÓ©Ë mË}º¯© ãÒÓˮӺ
º º¹Ë¯Èº¯È ºmË
È
ÒË ¯ÈÏãÒ
Ó©ä
°º°mËÓÓ©äÏÓÈËÓÒ«äãÒÓˮӺÓËÏÈmÒ°Òä©
iº}ÈÏÈËã°mº
|ÒÓ°º°mËÓÓ©®mË}º¯ãÒÓˮӺÓËÏÈmÒ°Òä}È}ÓËÓãËmº®
°ÈÓ©
m
ãÒÓˮӺÓËÏÈmÒ°Ò䩲°º°mËÓÓ©²mË}º¯ºm
ff f
m
12
, ,...,
ºmË
ÈÒ²¯ÈÏãÒÓ©ä°º°mËÓÓ©äÏÓÈËÓÒ«äº}ÈÎËäºmªºä°ãÈË
ãÒÓˮӺÓËÏÈmÒ°Òä©Ò
m
°º°mËÓÓ©²mË}º¯ºm
ff f f
mm12 1
,,...,,
+
˰ãÒºÓÒ
È}ÎËºmËÈ¯ÈÏãÒÓ©ä°º°mËÓÓ©äÏÓÈËÓÒ«ä¯Ë¹ºãºÎÒä¹¯ºÒmÓºË

κκ κ κ
11 2 2 1 1
ff f fo
mm m m
+++ + =
++
...

¹¯ÒËäËÏº¯ÈÓÒËÓÒ«ºÓº°ÒäºÎÓº°ÒÈºÒ°ãº
κ
m+
1
0

ºË®°mËäÓÈºËȰÒ¯ÈmËÓ°mÈº¹Ë¯Èº¯ºä
A


( ... )
... .
Af f f f
ff f fo
mm m m
mm m m m m
κκ κ κ
κλ κλ κ λ κ λ
11 2 2 1 1
11 1 2 2 2 1 1 1
+++ + =
=+++ + =
++
++ +

v¯º®°º¯ºÓ©äÓºÎÈ«ºËȰÒ¯ÈmËÓ°mÈÓÈ
λ
m+1
Òm©ÒÈ«¹º
ãËÓÓº¯ËÏãÈÒÏ¯ÈmËÓ°mÈ¹ºãÒä

κλ λ κλ λ κ λ λ
11 11 2 2 12 1
()( )...( )
−+++ =
++ +mmmmmm
ff fo

º°}ºã} m°Ë °º°mËÓÓ©Ë ÏÓÈËÓÒ« ¯ÈÏÓ©Ë È mË}º¯©
ff f
m12
,,...,
ãÒÓˮӺ
ÓËÏÈmÒ°Òä©Ë º
κκ κ
12
0
====
...
m
 sº ºÈ ÒÏ  °ãËË
κ
m+
=
1
0
 º
¹¯ºÒmº¯ËÒ°ËãÈÓÓºäË¹¯Ë¹ºãºÎËÓÒÒ¹º¹¯ÒÓÒ¹äÈËäÈÒ˰}º®
ÒÓ}ÒÒÒÏãÒÓˮӺ®ÓËÏÈmÒ°Ò亰ÒªãËäËÓºm
ff f
m12
,,...,
°ãËËãÒÓË®ÓÈ«
ÓËÏÈmÒ°Ò亰ªãËäËÓºm
ff f f
mm12 1
,,...,,
+

˺¯ËäÈº}ÈÏÈÓÈ
cÈÏËã 
ÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



                                             f = B ( λf ) Èm°Òã‚}ºä䂈ү‚Ë亰ˆÒÒãÒ
           sºˆºÈ°¹¯ÈmËãÒmº¯ÈmËÓ°ˆmº BA
           ÓˮӺ°ˆÒº¹Ë¯Èˆº¯ºm A Ò B ­‚ˈm˯ӺÒ A ( B f ) = λ ( B f ) ¹¯Ò ∀f ∈ Λ∗ 
           
           º°ãËÓË˯ÈmËÓ°ˆmººÏÓÈÈˈˆº B̂f ∈ Λ∗ ¹¯Ò ∀f ∈ Λ∗ ˆº˰ˆ  Λ∗ ÒÓmȯÒ
         ÈӈӺ˹º¹¯º°ˆ¯ÈÓ°ˆmºº¹Ë¯Èˆº¯È B 
         
         
    vã˰ˆmÒ˺}ÈÏÈÓº
         
         
         
 ‘˺¯ËäÈ            vº­°ˆmËÓÓ©Ë mË}ˆº¯© ãÒÓˮӺº º¹Ë¯Èˆº¯È ºˆmËÈ ÒË ¯ÈÏãÒÓ©ä
              °º­°ˆmËÓÓ©äÏÓÈËÓÒ«äãÒÓˮӺÓËÏÈmÒ°Òä©
           
  iº}ÈÏȈËã°ˆmº
         
         
         |ÒÓ°º­°ˆmËÓÓ©®mË}ˆº¯ãÒÓˮӺÓËÏÈmÒ°Òä}È}ÓËӂãËmº®
         
         ‚°ˆ ÈÓ© mãÒÓˮӺÓËÏÈmÒ°Ò䩲°º­°ˆmËÓÓ©²mË}ˆº¯ºm f 1 , f 2 , ... , f m ºˆmË
         È Ò² ¯ÈÏãÒÓ©ä °º­°ˆmËÓÓ©ä ÏÓÈËÓÒ«ä º}ÈÎËä ˆº m ªˆºä °ã‚ÈË ­‚‚ˆ
         ãÒÓˮӺ ÓËÏÈmÒ°Òä© Ò m °º­°ˆmËÓÓ©²mË}ˆº¯ºm f 1 , f 2 , ... , f m , f m+1 ˰ãÒºÓÒ
         ˆÈ}Î˺ˆmËÈ ˆ¯ÈÏãÒÓ©ä°º­°ˆmËÓÓ©äÏÓÈËÓҫ䁯˹ºãºÎÒ乯ºˆÒmÓºË
         
          κ 1 f 1 + κ 2 f 2 +...+κ m f m + κ m+1 f m+1 = o   
         
         ¹¯ÒËä­ËϺ¯ÈÓÒËÓÒ«º­Óº°ˆÒäºÎÓº°҈Ȉ ˆºҰ㺠κ m+1 ≠ 0 
         
           ºË®°ˆm‚ËäÓȺ­ËȰˆÒ¯ÈmËÓ°ˆmÈ  º¹Ë¯Èˆº¯ºä A 
           
                              A (κ 1 f 1 + κ 2 f 2 +...+κ m f m + κ m+1 f m+1 ) =
                                                                                   
                              = κ 1λ 1 f 1 + κ 2 λ 2 f 2 +...+κ m λ m f m + κ m+1λ m+1 f m+1 = o .
        
        v¯‚º®°ˆº¯ºÓ©‚äÓºÎÈ«º­ËȰˆÒ¯ÈmËÓ°ˆmÈ  ÓÈ λ m+1 Òm©҈ȫ¹º
        ãËÓÓº¯Ëς㠈ȈÒϯÈmËÓ°ˆmÈ  ¹ºã‚Òä
        
         κ 1 ( λ 1 − λ m+1 ) f 1 + κ 2 ( λ 2 − λ m+1 ) f 2 +...+κ m ( λ m − λ m+1 ) f m = o 
        
        º°}ºã }‚ m°Ë °º­°ˆmËÓÓ©Ë ÏÓÈËÓÒ« ¯ÈÏÓ©Ë È mË}ˆº¯© f1 , f 2 , ... , f m  ãÒÓˮӺ
        ÓËÏÈmÒ°Òä©Ë ˆº κ 1 = κ 2 =... = κ m = 0  sº ˆºÈ ÒÏ   °ãË‚ˈ κ m+1 = 0  ˆº
        ¹¯ºˆÒmº¯Ë҈°ËãÈÓÓºä‚m© ˹¯Ë¹ºãºÎËÓÒ Ò¹º¹¯ÒÓÒ¹‚äȈËäȈÒ˰}º®
        ÒÓ‚}ÒÒ ÒÏ ãÒÓˮӺ® ÓËÏÈmÒ°Ò亰ˆÒ ªãËäËӈºm f1 , f 2 , ... , f m  °ãË‚ˈ ãÒÓË®ÓÈ«
        ÓËÏÈmÒ°Ò亰ˆ ªãËäËӈºm f 1 , f 2 , ... , f m , f m+1 
        
     ‘˺¯ËäȺ}ÈÏÈÓÈ