Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 210 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
vã˰mÒË

ÒÓˮө® º¹Ë¯Èº¯
A
m
n
Λ
äºÎË ÒäË°ºÓº° º ¹¯ºÒÏ
mºãÓºº ÓËÓãËmººäÓºÎÒËã« ÓËºãËË Ëä
n
°º°mËÓÓ©²mË}º
¯ºmºmËÈÒ²¯ÈÏãÒÓ©ä°º°mËÓÓ©äÏÓÈËÓÒ«ä
˺¯ËäÈ

p°ãÒ ãÒÓˮө®º¹Ë¯Èº¯
A
Ë®°mÒ®m
n
Λ
 ÒäËË
n
¯ÈÏãÒÓ©²
°º°mËÓÓ©²ÏÓÈ
ËÓÒ®º°˰mËÈÏÒ°º¯ÈϺmÈÓÓ©®°º°mËÓ
Ó©äÒmË}º¯ÈäÒ
A
m}ºº¯ºääÈ¯Ò
È
ÈÓÓº
ºãÒÓˮӺ
ºº¹Ë¯Èº¯È
ÒäËËÒȺÓÈã Ó©®¹¯ÒËäÓÈËËÒȺÓÈãÒ¯È°¹ºãºÎËÓ©°º
°mËÓÓ©ËÒ°ãÈº¹Ë¯Èº¯È
A
iº}ÈÏÈËã°mº
vãËËÒÏ˺¯Ëä©ÒÏÈäËÈÓÒ«ºmÈÎÓº°Ò°º°mËÓÓ©²mË}º¯ºm¹
˺¯ËäÈ

°
Λ
ÒÓmȯÒÈÓÓºË °º°mËÓÓºË ¹º¹¯º°¯ÈÓ°mº ãÒÓˮӺº
º¹Ë¯Èº¯È
A
 ºmËÈËË ÓË}ºº¯ºä °º°mËÓÓºä ÏÓÈËÓÒ
λ
0
}¯ÈÓº°Ò
k
ºÈÒäËËä˰º°ººÓºËÓÒË
1
≤≤
dim( )
Λ
k
iº}ÈÏÈËã°mº
{©˯Ëäm
n
Λ
ÈÏÒ°
},...,,,...,,{
121 nmm
ggggg
+
È}º©˺¹Ë¯m©Ë
)dim(
Λ=m
ªãËäËÓºm ¹¯ÒÓÈãËÎÈãÒ
Λ
 {°Òã°ãºmÒ«}¯ÈÓº°Ò °º°mËÓÓººÏÓÈËÓÒ«
;[,]
Ag g i m
ii
==
λ
0
1
¹ºªºääÈ¯ÒÈ

AE
g
λ
mªºäÈÏÒ°ËËÒäË

... ...
... ...
... ... ... ... ... ... ...
... ...
... ... ... ... ... ... ...
... ...
,
,
,
,
AE
g
mn
mn
mm mn
nm nn
−=
+
+
+
+
λ
λλ α α
λλ α α
λλα α
ααλ
0111
0212
01
1
00
00
00
00 0

|°È °ãËË º
det

()()
AE P
g
m
nm
−=
λλλλ
0
 º°}ºã} äÓºÎÒËãÒ
È
()
λλ
0
äº
°ºË¯ÎÈ°«ÈËÒmäÓººãËÓË
P
nm
()
λ
º
NP
˰ãÒ
k
}¯ÈÓº°}º¯Ó«
λ
0
²È¯È}˯ҰÒ˰}ººäÓººãËÓÈ
det

AE
g
λ

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



 vã˰ˆmÒË             ÒÓˮө® º¹Ë¯Èˆº¯ A  m Λn  äºÎˈ Òäˈ  ° ˆºÓº°ˆ                                            º ¹¯ºÒÏ
 
                        mºã Óºº ÓËӂãËmºº äÓºÎ҈Ëã«  ÓË ­ºãËË Ëä n °º­°ˆmËÓÓ©² mË}ˆº
                        ¯ºmºˆmËÈ Ò²¯ÈÏãÒÓ©ä°º­°ˆmËÓÓ©äÏÓÈËÓÒ«ä
              
              
              
 ‘˺¯ËäÈ               p°ãÒ ãÒÓˮө® º¹Ë¯Èˆº¯ A  Ë®°ˆm‚ Ò® m Λn  ÒäËˈ n ¯ÈÏãÒÓ©²
 
                        °º­°ˆmËÓÓ©²ÏÓÈËÓÒ®ˆº°‚Ë°ˆm‚ˈ­ÈÏÒ°º­¯ÈϺmÈÓÓ©®°º­°ˆmËÓ
                        Ó©äÒmË}ˆº¯ÈäÒ A m}ºˆº¯ºääȈ¯ÒÈÈÓÓººãÒÓˮӺºº¹Ë¯Èˆº¯È
                        ÒäËˈÒȺÓÈã Ó©®mÒ¹¯ÒËäÓÈËË ÒȺÓÈãүȰ¹ºãºÎËÓ©°º­
                        °ˆmËÓÓ©ËÒ°ãȺ¹Ë¯Èˆº¯È A 
        
  iº}ÈÏȈËã°ˆmº
   
      vãË‚ˈÒψ˺¯Ëä©ÒÏÈäËÈÓÒ«ºmÈÎÓº°ˆÒ°º­°ˆmËÓÓ©²mË}ˆº¯ºm¹
        
        
        
 ‘˺¯ËäÈ               ‚°ˆ  Λ∗   ÒÓmȯÒÈӈӺË °º­°ˆmËÓÓºË ¹º¹¯º°ˆ¯ÈÓ°ˆmº ãÒÓˮӺº
 
                        º¹Ë¯Èˆº¯È A  ºˆmËÈ ËË ÓË}ºˆº¯ºä‚ °º­°ˆmËÓÓºä‚ ÏÓÈËÓÒ  λ0
                        }¯ÈˆÓº°ˆÒk‘ºÈÒäËˈä˰ˆº°ººˆÓºËÓÒË 1 ≤ dim( Λ∗ ) ≤ k 
        
  iº}ÈÏȈËã°ˆmº
      
      
          {©­Ë¯Ëäm Λn ­ÈÏÒ° {g1 , g 2 ,..., g m , g m +1 ,..., g n } ˆÈ}ˆº­©Ëº¹Ë¯m©Ë m = dim( Λ∗ ) 
          ªãËäËӈºm ¹¯ÒÓÈãËÎÈãÒ Λ  { °Òã‚ ‚°ãºmÒ« }¯ÈˆÓº°ˆÒ °º­°ˆmËÓÓºº ÏÓÈËÓÒ«
               = λ g ; i = [1, m] ¹ºªˆºä‚äȈ¯ÒÈ A − λ E
              Ag                                                                                     mªˆºä­ÈÏÒ°Ë­‚ˈÒäˈ 
                 i 0 i                                                                           g
          mÒ
          
          
                                               λ0 −λ    0                   ...        0  α1,m+1             ...     α1n
                                                  0  λ0 −λ                  ...       0   α 2 ,m+1           ...     α 2n
                                                 ...   ...                  ...      ...     ...             ...      ...
                           A − λ E         =                                                                              
                                         g        0     0                   ...   λ 0 − λ α m,m+1            ...     α mn
                                                 ...   ...                  ...      ...     ...             ...      ...
                                                  0     0                   ...       0   α n ,m+1           ...   α nn − λ
                                                                             
     
 
          |ˆ° È °ãË‚ˈ ˆº det A − λ E                          = ( λ 0 − λ ) m Pn − m ( λ )  º°}ºã }‚ äÓºÎ҈ËãÒ
                                                                    g
          mÒÈ ( λ 0 − λ ) 亂ˆ°º˯ÎȈ °«ˆÈ}ÎËÒmäÓººãËÓË Pn − m ( λ ) ˆº N ≥ P ˰ãÒ
              k }¯ÈˆÓº°ˆ }º¯Ó« λ 0 ²È¯È}ˆË¯Ò°ˆÒ˰}ººäÓººãËÓÈ det A − λ E                                             g