Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 214 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
¯Òä˯

°{ ¹¯º°¯ÈÓ°mË
n
}ºä¹ºÓËÓÓ©² °ºãºm äºÎÓº ÏÈÈÁÓ}
ÒºÓÈã ¹º°ÈmÒm °ºã
n
ξ
ξ
ξ
...
2
1
m °ººmË°mÒË Ò°ãº
=
n
i
ii
1
ξ
φ
 Ë
φ
L
LQ
,[,]
=
1
ÓË}ºº¯©ËÁÒ}°Ò¯ºmÈÓÓ©Ë}ºÓ°ÈÓ©
°
{mË}º¯Óºä˺äË¯Ò˰}ºä¹¯º°¯ÈÓ°mËÁÓ}ÒºÓÈãºä«mã«Ë°«
ãÒÓÈmË}º¯Èº˰
fx x() | |=

°
{ ¹¯º°¯ÈÓ°mË ÁÓ}Ò®
x
()
τ
 º¹¯ËËãËÓÓ©² ÓÈ
[-1,1]
ÁÓ}Òº
ÓÈãºä«mã«Ë°«
fx x() ()
=
0
µlnszj{ytr|q¹µººÏÓÈÈËäÈ«}È}
δ
()x
°Èm«È«m°ººmË°mÒË}Èκ®ÁÓ}ÒÒ
x()
τ
ËËÏÓÈËÓÒËm
ÓãË
°
{ ¹¯º°¯ÈÓ°mË ÁÓ}Ò®
x()
τ
 Ó˹¯Ë¯©mÓ©² ÓÈ
[,]
αβ
,
ÁÓ}Òº
ÓÈãºä «mã«Ë°« º¹¯ËËãËÓÓ©® ÒÓ˯Èã º ˰
fx p x d() ()()=
τττ
α
β
Ë
p()
τ
ÓË}ºº¯È«ÏÈÈÓÓÈ«ÓÈ
[,]
αβ
ÓË
¹¯Ë¯©mÓÈ«ÁÓ}Ò«
°
{ ãÒÓˮӺä ¹¯º°¯ÈÓ°mË }mȯÈÓ©² äÈ¯ÒmÒÈ
2221
1211
αα
αα
ÁÓ}ÒºÓÈãºä«mã«Ë°«º¹¯ËËãÒËã
21122211
2221
1211
det
αααα
αα
αα
=

|¹¯ËËãËÓÒË

nÓ}ÒºÓÈã
)(xf
ÓÈÏ©mÈË°« sqtnptu {ytr|qvtjsvu ÒãÒ sqtnptvp
{véuvp˰ãÒã«ã©²
x,y
Λ
ÒãººÒ°ãÈ
λ


°

fx y fx fy()()()
+= +

°

fx fx() ()
λλ
=

ÈÈ

bvrjojz·zv{ytr|qvtjskwéqunéj}
°

°
q
°
¹ks¹ízx¹ sqtnptuq
j{ytr|qvtjskwéqunéj}
°
q
°
tnz
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



  ¯Òä˯            °{ ¹¯º°ˆ¯ÈÓ°ˆmË n}ºä¹ºÓËӈө² °ˆºã­ºm äºÎÓº ÏÈȈ  Á‚Ó}
 
                                                               ξ1
                                                                ξ2                                                            n
                                ÒºÓÈã ¹º°ˆÈmÒm °ˆºã­‚
                                                                 ...
                                                                      m °ººˆmˈ°ˆmÒË Ò°ãº                               ∑φiξ i  Ë
                                                                                                                             i =1
                                                                ξn
                                 φ L , L = [1, Q] ÓË}ºˆº¯©ËÁÒ}°Ò¯ºmÈÓÓ©Ë}ºÓ°ˆÈӈ©
                         
                         
                         °{mË}ˆº¯Óºä˺äˈ¯Ò˰}ºä¹¯º°ˆ¯ÈÓ°ˆmËÁ‚Ó}ÒºÓÈãºä«mã«Ëˆ°«
                                                                                  →
                                ãÒÓÈmË}ˆº¯Èˆº˰ˆ  f ( x ) = | x | 
                         
                         
                         °{ ¹¯º°ˆ¯ÈÓ°ˆmË Á‚Ó}Ò® x(τ )  º¹¯ËËãËÓÓ©² ÓÈ [-1,1] Á‚Ó}Òº
                              ÓÈãºä«mã«Ëˆ°« f ( x ) = x ( 0) µlnszj{ytr|q¹µº­ºÏÓÈÈËäÈ«}È}
                              δ ( x) °ˆÈm«È«m°ººˆmˈ°ˆmÒË}Èκ®Á‚Ó}ÒÒ x(τ ) ËËÏÓÈËÓÒËm
                              ӂãË
                         
                         

                         °{ ¹¯º°ˆ¯ÈÓ°ˆmË Á‚Ó}Ò® x(τ )  Ó˹¯Ë¯©mÓ©² ÓÈ [α , β ] , Á‚Ó}Òº
                              ÓÈãºä    «mã«Ëˆ°«    º¹¯ËËãËÓÓ©®       Òӈ˯Èã         ˆº  ˰ˆ 
                                            β
                                  f ( x ) = ∫ p(τ ) x (τ ) dτ Ë p(τ ) ÓË}ºˆº¯È«ÏÈÈÓÓÈ«ÓÈ [α , β ] ÓË
                                            α
                                ¹¯Ë¯©mÓÈ«Á‚Ó}Ò«
                         
                                                                                                                               α11 α12
                         °{ ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË }mȯȈө² äȈ¯Ò mÒÈ                                                       
                                                                                                                               α 21 α 22
                                Á‚Ó}ÒºÓÈãºä«mã«Ëˆ°«º¹¯ËËã҈Ëã 
                                                                  α11 α12
                                                            det             = α11α 22 − α12α 21 
                                                                  α 21 α 22
            
            
            
 |¹¯ËËãËÓÒË            n‚Ó}ÒºÓÈã f (x ) ÓÈÏ©mÈˈ°« sqtnpt€u {ytr|qvtjsvu ÒãÒ sqtnptvp
 
                         {véuvp ˰ãÒã«ã ­©²x,y∈ΛÒã ­ººÒ°ãÈλ
                         ° f ( x + y ) = f ( x ) + f ( y ) 
                         ° f ( λ x ) = λ f ( x ) 
            
            
            
 ~ÈÈÈ                 bvrjojz·zv{ytr|qvtjs€kwéqunéj}°°q°¹ks¹ízx¹sqtnpt€uq
 
                         j{ytr|qvtjs€kwéqunéj}°q°tnz