Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 218 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
°mËÓÓ©ËºãÒÒ«º©ËÒ°«mªºäÓÈ®Ëä¹¯ÈmÒãºÒÏäËÓËÓÒ«}ºä¹ºÓËÓãÒ
ÓˮӺºÁÓ}ÒºÓÈãÈm
n
Λ
¹¯Ò¹Ë¯Ë²ºËººÓººÈÏÒ°È}¯ºä
°m
Λ
n
ÈÓ©mÈÈÏÒ°È
{, ,..., }
gg g
n
12
Ò
{, ,..., }
′′ ′
gg g
n
12
°m«ÏÈÓÓ©ËäÈ¯ÒË®
¹Ë¯Ë²ºÈ
S
n
n
nn nn
=
σσ σ
σσ σ
σσ σ
11 12 1
21 22 2
12
...
...
... ... ... ...
...
º˰
=
=
gg
jiji
i
n
σ
1
ã«
j
=[1,
n
].
zºº¯ÒÓÈÓ©Ë ¹¯Ë°ÈmãËÓÒ« ÓË}ºº¯ºº ªãËäËÓÈ  ÒäËm¯È°°äȯÒ
mÈË䩲 ÈÏҰȲ
∑∑
==
==
n
i
n
i
iiii
ggx
11
ξ
ξ
 È }ºº¯ÒÓÈÓ©Ë ¹¯Ë°ÈmãËÓÒ« ãÒÓˮӺº
ÁÓ}ÒºÓÈãÈ
f
(
x
)
°ººmË°mËÓÓº
∑∑
==
==
n
i
n
i
iiii
xf
11
)(
ξ
φ
ξ
φ

sÈ®Ëä m©¯ÈÎËÓÒ« ã« mËãÒÒÓ
φ
L
˯ËÏ
φ
L
 j°¹ºãÏ« mmËËÓÓ©Ë
ººÏÓÈËÓÒ«¹ºãÈËä
=
===
===
∑∑
φσσφσ
ii kik kik
k
n
k
n
kki
k
n
fg f g fg
() ( ) ( )
111

ºº}ÈÏ©mÈË°ãËËËm˯ÎËÓÒË
˺¯ËäÈ

zºä¹ºÓËÓ© }ºº¯ÒÓÈÓºº ¹¯Ë °ÈmãËÓÒ« ãÒÓˮӺº ÁÓ}ÒºÓÈãÈ
′′
φφ φ
12
, ,...,
n
Ò
φφ φ
12
, ,...,
n
mm² ¯ÈÏÓ©² ÈÏҰȲ °m«ÏÈÓ© °ºº
ÓºËÓÒËä
==
=
φφσ
kiik
i
n
kn
1
1;[,]
 Ë }ºªÁÁÒÒËÓ©
σ
ik
}ºªÁÁÒ
ÒËÓ©äÈ¯Ò
©¹Ë¯Ë²º
ÈÒãÒmäÈ¯Ò
Óº®Áº¯äË
ffS
gg
=
|äËÒä º }ºä¹ºÓËÓ© ãÒÓˮӺº ÁÓ}ÒºÓÈãÈ ÏȹҰÈÓÓ©Ë ¹º °ºãÈä
¹¯Ëº¯ÈÏ°« ¹¯ÒÏÈäËÓË ÈÏÒ°ÈÈ}ÎË }È}¹¯Ëº¯ÈÏ°«ÈÏÒ°Ó©ËªãËäËÓ© °ä
¹
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



°ˆmËÓө˺ˆãÒÒ« ˆº­©‚­Ë҈ °«mªˆºäÓÈ®Ë乯ÈmÒãºÒÏäËÓËÓÒ«}ºä¹ºÓËӈãÒ
ÓˮӺºÁ‚Ó}ÒºÓÈãÈm Λ n ¹¯Ò¹Ë¯Ë²ºËºˆºÓºº­ÈÏÒ°È}¯‚ºä‚
       
       
       ‚°ˆ mΛ n ÈÓ©mÈ­ÈÏÒ°È {g1 , g 2 ,..., g n } Ò {g1′ , g 2′ ,..., g n′ } °m«ÏÈÓÓ©ËäȈ¯ÒË®
¹Ë¯Ë²ºÈ
       
                                  σ 11 σ 12                ... σ 1n
                                  σ 21 σ 22                ... σ 2 n                                 n
                              S =
                                   ...  ...                ...  ...
                                                                              ˆº˰ˆ  g ′j =   ∑ σ ij gi ã«∀j=[1,n].
                                                                                                    i =1
                                  σ n1 σ n 2               ... σ nn
            
            zºº¯ÒÓȈөË ¹¯Ë°ˆÈmãËÓÒ« ÓË}ºˆº¯ºº ªãËäËӈÈ ­‚‚ˆ Òäˈ  m ¯È°°äȈ¯Ò
                                            n                n
mÈË䩲 ­ÈÏҰȲ mÒ x =                  ∑ ξ i g i = ∑ ξ i′g i′  È }ºº¯ÒÓȈөË ¹¯Ë°ˆÈmãËÓÒ« ãÒÓˮӺº
                                           i =1             i =1
                                                                          n            n
Á‚Ó}ÒºÓÈãÈf(x)°ººˆmˈ°ˆmËÓÓº f ( x ) =                             ∑ φ i ξ i = ∑ φ i′ξ i′ 
                                                                        i =1          i =1
       
       sÈ®Ëä m©¯ÈÎËÓÒ« ã« mËãÒÒÓ                                           φ L′  ˯ËÏ φ L  j°¹ºã ς« mmËËÓÓ©Ë
º­ºÏÓÈËÓÒ«¹ºã‚ÈËä
                                                                    n                  n                    n
                                        φ i′ = f ( g i′ ) = f ( ∑ σ ki g k ) = ∑ σ ki f ( g k ) = ∑ φ k σ ki 
                                                                   k =1               k =1                 k =1
         
         ˆºº}ÈÏ©mÈˈ°ãË‚ ËË‚ˆm˯ÎËÓÒË
         
         
 ‘˺¯ËäÈ       zºä¹ºÓËӈ© }ºº¯ÒÓȈӺº ¹¯Ë°ˆÈmãËÓÒ« ãÒÓˮӺº Á‚Ó}ÒºÓÈãÈ
 
                 φ1′, φ2′ ,..., φn′  Ò φ1 , φ2 ,..., φn  m m‚² ¯ÈÏÓ©² ­ÈÏҰȲ °m«ÏÈÓ© °ººˆ
                                                     n
                         ÓºËÓÒËä φk′ =            ∑ φ i σ ik          ; k = [1, n]  Ë }ºªÁÁÒÒËӈ© σik  }ºªÁÁÒ
                                                    i =1

                         ÒËӈ©äȈ¯Ò©¹Ë¯Ë²ºÈÒãÒmäȈ¯ÒÓº®Áº¯äË f                                             g′
                                                                                                                              = f    g
                                                                                                                                         S 
          
          
          |ˆäˈÒä ˆº }ºä¹ºÓËӈ© ãÒÓˮӺº Á‚Ó}ÒºÓÈãÈ ÏȹҰÈÓÓ©Ë ¹º °ˆºã­Èä
¹¯Ëº­¯Èς ˆ°« ¹¯Ò ÏÈäËÓË ­ÈÏÒ°È ˆÈ} ÎË }È} ¹¯Ëº­¯Èς ˆ°« ­ÈÏÒ°Ó©Ë ªãËäËӈ© °ä
¹