Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 220 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
rÒãÒÓˮөËÁÓ}ÒºÓÈã©m
n
Λ

°m
n
Λ
ÏÈÈÓ©ÈÏÒ°
},...,,{
21
n
ggg
ÒÒãÒÓˮө®ÁÓ}ÒºÓÈã
),(
yxB
sÈ®
Ëä}È}m©¯ÈÎÈ°«˺ÏÓÈËÓÒ«˯ËÏ}ºº¯ÒÓÈ©ȯäËÓºm
¯Ë¹ºãºÎÒä º m ¯È°°äÈ¯ÒmÈËäºä ÈÏÒ°Ë
=
=
n
i
ii
gx
1
ξ
Ò
=
=
n
j
jj
gy
1
η
 ºÈ
°ºãȰӺº¹¯ËËãËÓÒ°¹¯ÈmËãÒm©¯ÈmËÓ°mÈ
∑∑∑∑
========
====
n
i
n
j
jiijji
n
i
n
j
ji
n
j
jj
n
i
ii
n
j
jj
n
i
ii
ggBggBggByxB
11111111
),(),(),(),(
η
ξ
βη
ξ
η
ξ
η
ξ

|¹¯ËËãËÓÒË

Ò°ãÈ
),(
jiij
ggB
=
β
ÓÈÏ©mÈ°« rvuwvtntzjuq iqsqtnptvmv {ytr|qv
tjsj
),(
yxB
mÈÏÒ°Ë
},...,,{
21
n
ggg
ÈäÈ¯ÒÈ
B
g
ij
=
β
ujzéq|np
iqsqtnptvmv{ytr|qvtjsj
p°ãÒ m
n
Λ
ÏÈÈÓ ÈÏÒ°
},...,,{
21
n
ggg
 º ÒãÒÓˮө® ÁÓ}ÒºÓÈã äºÎË ©
¹¯Ë°ÈmãËÓmmÒË
,
...
...
............
...
...
...
),(
T
2
1
21
22221
11211
211
11
T
1
1
11
1
11
ggg
nnnnn
n
n
ni
n
k
n
i
ki
k
i
n
k
n
i
kikik
n
k
n
i
ki
yBx
yx
===
===
∑∑
∑∑∑∑
==
====
η
η
η
βββ
βββ
βββ
ξ
ξ
ξ
ηβ
ξ
ηβ
ξ
η
ξ
βΒ
Ë
x
g
Ò
y
g
}ºº¯ÒÓÈÓ©Ë°ºã©ªãËäËÓºm
x
Ò
y
mÈÓÓºäÈÏÒ°Ë
lÈ¯ÒÈÒãÒÓˮӺºÁÓ}ÒºÓÈãÈÏÈmÒ°Òºm©º¯ÈÈÏÒ°È¯ÈmÒãºÒÏäËÓË
ÓÒ«äÈ¯Ò©ÒãÒÓˮӺºÁÓ}ÒºÓÈãÈ¹¯ÒÏÈäËÓËÈÏÒ°ÈÈË
˺¯ËäÈ

°
S
äÈ¯ÒÈ ¹Ë¯Ë²ºÈ º ÈÏÒ°È
},...,,{
21
n
ggg
}ÈÏÒ°
},...,,{
21
n
ggg
ºÈ
BSBS
gg
=
T

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



rÒãÒÓˮөËÁ‚Ó}ÒºÓÈã©m Λ 
                                                    n
          
          
       ‚°ˆ m Λn ÏÈÈÓ©­ÈÏÒ° {g1 , g 2 ,..., g n } Ò­ÒãÒÓˮө®Á‚Ó}ÒºÓÈã B ( x , y ) sÈ®
Ëä}È}m©¯ÈÎÈ ˆ°«ËºÏÓÈËÓÒ«˯ËÏ}ºº¯ÒÓȈ©ȯ‚äËӈºm
       
                                                                                                           n                       n
          ¯Ë¹ºãºÎÒä ˆº m ¯È°°äȈ¯ÒmÈËäºä ­ÈÏÒ°Ë x =                                              ∑ξ i g i  Ò   y=       ∑η j g j  ˆºÈ
                                                                                                          i =1                     j =1
°ºãȰӺº¹¯ËËãËÓÒ °¹¯ÈmËãÒm©¯ÈmËÓ°ˆmÈ
      
                           n               n                 n             n                   n     n                         n       n
      B ( x, y ) = B (∑ ξ i g i , ∑η j g j ) = ∑ ξ i B ( g i , ∑η j g j ) = ∑ ∑ ξ i η j B ( g i , g j ) = ∑ ∑ β ij ξ i η j 
                          i =1             j =1           i =1             j =1            i =1 j =1                          i =1 j =1
          
          
          
 |¹¯ËËãËÓÒË                      Ò°ãÈ β ij = B( g i , g j )  ÓÈÏ©mÈ ˆ°« rvuwvtntzjuq iqsqtnptvmv {ytr|qv
 
                           tjsj B ( x , y ) m­ÈÏÒ°Ë {g1 , g 2 ,..., g n } ÈäȈ¯ÒÈ B
                                                                                                                   g
                                                                                                                       = βij ujzéq|np
                           iqsqtnptvmv{ytr|qvtjsj
          
          
          
       p°ãÒ m Λn  ÏÈÈÓ ­ÈÏÒ° {g1, g 2 ,..., g n }  ˆº ­ÒãÒÓˮө® Á‚Ó}ÒºÓÈã äºÎˈ ­©ˆ 
¹¯Ë°ˆÈmãËÓmmÒË
       
                                   n   n                 n       n
              Β ( x, y ) = ∑∑ β kiξ kηi = ∑∑ξ k 1β kiηi1 =
                               k =1i =1                 k =1i =1
                                                                            β11 β12            ... β1n η1
                                                                                                                                                       
                   n           n                                            β 21 β 22          ... β 2 n η 2
                  ∑ ∑
                                                                                                                          T
              = ξ 1Tk β kiηi1                  = ξ1 ξ 2          ... ξ n                                     = x          g
                                                                                                                               B     g
                                                                                                                                           y   g
                                                                                                                                                   ,
               k =1  i =1                                                    ...  ...          ... ... ...
                                                                            β n1 β n2          ... β nn η n
                                                                               
Ë x            Ò y        }ºº¯ÒÓȈө˰ˆºã­©ªãËäËӈºmxÒymÈÓÓºä­ÈÏÒ°Ë
              g            g
      
      
      
      lȈ¯ÒÈ­ÒãÒÓˮӺºÁ‚Ó}ÒºÓÈãÈÏÈmҰ҈ºˆm©­º¯È­ÈÏҰȁ¯ÈmÒãºÒÏäËÓË
ÓÒ«äȈ¯Ò©­ÒãÒÓˮӺºÁ‚Ó}ÒºÓÈãȹ¯ÒÏÈäËÓË­ÈÏÒ°ÈÈˈ
      
      
 ‘˺¯ËäÈ                 ‚°ˆ                S   äȈ¯ÒÈ ¹Ë¯Ë²ºÈ ºˆ ­ÈÏÒ°È {g1, g 2 ,..., g n }  } ­ÈÏÒ°‚
                                                                            T
                          {g1′ , g 2′ ,..., g n′ } ˆºÈ B         g′
                                                                           = S         B   g
                                                                                                   S