Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 222 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
iº}ÈÏÈËã°mº
s˺²ºÒ亰°ãËËÒÏ°ººÓºËÓÒ®
ββ
ij i j j i ji
Bg g Bg g i j n====
(, ) ( ,) ; , [,]1

iº}ÈÎËäº°ÈºÓº°iË®°mÒËãÓº˰ãÒ
],1[,;
nji
jiij
==
ββ
º
),(),(
111111
yxBxyB
ji
n
i
n
j
ijji
n
j
n
i
ji
n
j
n
i
ijji
====
∑∑∑∑∑∑
======
η
ξ
βη
ξ
β
ξ
ηβ

˺¯ËäÈº}ÈÏÈÓÈ
zmȯÈÒÓ©ËÁÓ}ÒºÓÈã©
|¹¯ËËãËÓÒË

° m ãÒÓˮӺä ¹¯º°¯ÈÓ°mË
Λ
}Èκä ªãËäËÓ
x
¹º°ÈmãËÓºm
°ººmË°mÒË Ò°ãº
Φ
(x)=B(x,x)
 Ë
B(x,y)
ÓË}ºº¯©® ÒãÒÓˮө®
ÁÓ}ÒºÓÈãm
Λ
ºÈºmº¯«ºm
Λ
ÏÈÈÓrkjléjzq·tp{ytr|qv
tjsÒãÒrkjléjzq·tj¹{véuj
{ºËä °ãÈËm mË˰mËÓÓºäãÒÓˮӺä ¹¯º°¯ÈÓ°mË ¹º ÏÈÈÓÓºä }mȯÈ
ÒÓºäÁÓ}ÒºÓÈãÓËãÏ«mº°°ÈÓºmÒ¹º¯ºÎÈÒ®˺ÒãÒÓˮө®ÁÓ}ÒºÓÈã
ºÓÈ}ºªºäºÎÓº°ËãÈã«°ãÈ«xquunzéq·tvmvÒãÒÓˮӺºÁÓ}ÒºÓÈãÈ
iË®°mÒËãÓº ¹° }mȯÈÒÓ©® ÁÓ}ÒºÓÈã
Φ
(x)
¹º¯ºÎËÓ °ÒääË¯ÒÓ©ä
ÒãÒÓˮөäÁÓ}ÒºÓÈãºä
B(x,y)
ºÈã«ã©²
x
Ò
y
ÒäËËä˰º¯ÈmËÓ°mº
ΦΦΦ
()(,)(,)(,)(,)(,)()(,)()
x y Bx yx y Bxx Bxy Byx Byy x Bxy y+=++=+++=+ +
2

|°È
Bxy x y x y(,) ( )()())
=+
1
2
(
ΦΦΦ

|¹¯ËËãËÓÒË

{
n
Λ
°ÒääË¯Ò˰}È« äÈ¯ÒÈ ÒãÒÓˮӺº ÁÓ}ÒºÓÈãÈ
1
2
(
ΦΦΦ
()()())xy x y+−
ÓÈÏ©mÈË°« ujzéq|np rkjléjzq·tvmv {ytr
|qvtjsj
Φ
(x)

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



  iº}ÈÏȈËã°ˆmº
         
         
         s˺­²ºÒ亰ˆ °ãË‚ˈÒϰººˆÓº ËÓÒ®
         
                                   βij = B ( g i , g j ) = B( g j , g i ) = β ji ; ∀i , j = [1, n] 
         
          iº}ÈÎË亰ˆÈˆºÓº°ˆ iË®°ˆm҈Ëã Óº˰ãÒ β ij = β ji ;                                     ∀i , j = [1, n] ˆº
          
                                             n   n                   n   n                  n   n
                              B ( y, x ) = ∑∑ β jiη jξ i = ∑∑ β jiξ iη j = ∑ ∑ β ijξ iη j = B ( x, y ) 
                                            j =1i =1                j =1i =1              i = 1 j =1
          
          
     ‘˺¯ËäȺ}ÈÏÈÓÈ
          
          
          
          
zmȯȈÒÓ©ËÁ‚Ó}ÒºÓÈã©
          
          
          
 |¹¯ËËãËÓÒË            ‚°ˆ  m ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË Λ  }ÈÎºä‚ ªãËäËӈ‚ x ¹º°ˆÈmãËÓº m
 
                         °ººˆmˈ°ˆmÒË Ò°ãº Φ(x)=B(x,x) Ë B(x,y) ÓË}ºˆº¯©® ­ÒãÒÓˮө®
                         Á‚Ó}ÒºÓÈãm Λ ˆºÈºmº¯«ˆˆºm Λ ÏÈÈÓrkjléjzq·t€p{ytr|qv
                         tjs ÒãÒrkjléjzq·tj¹{véuj 
       
       
       { º­Ëä °ã‚ÈË m m˝˰ˆmËÓÓºä ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË ¹º ÏÈÈÓÓºä‚ }mȯÈ
ˆÒÓºä‚Á‚Ó}ÒºÓÈã‚ÓËã Ï«mº°°ˆÈÓºm҈ ¹º¯ºÎÈ Ò®Ëº­ÒãÒÓˮө®Á‚Ó}ÒºÓÈã
ºÓÈ}ºªˆºäºÎÓº°ËãȈ ã«°ã‚È«xquunzéq·tvmv­ÒãÒÓˮӺºÁ‚Ó}ÒºÓÈãÈ
       
       iË®°ˆm҈Ëã Óº ¹‚°ˆ  }mȯȈÒÓ©® Á‚Ó}ÒºÓÈã Φ(x) ¹º¯ºÎËÓ °Òääˈ¯ÒÓ©ä
­ÒãÒÓˮөäÁ‚Ó}ÒºÓÈãºäB(x,y) ˆºÈã«ã ­©²xÒyÒäËˈä˰ˆº¯ÈmËÓ°ˆmº
       
       
   Φ ( x + y ) = B ( x + y , x + y ) = B ( x , x ) + B ( x , y ) + B ( y , x ) + B ( y , y ) = Φ ( x ) + 2 B ( x , y ) + Φ ( y ) 
                            1
|ˆ° È B ( x , y ) =         ( Φ ( x + y ) − Φ ( x ) − Φ ( y ) ) 
                            2
          
          
          
 |¹¯ËËãËÓÒË            {      Λn        °Òääˈ¯Ò˰}È«                    äȈ¯ÒÈ         ­ÒãÒÓˮӺº              Á‚Ó}ÒºÓÈãÈ
 
                         1
                           (Φ ( x + y ) − Φ ( x ) − Φ ( y ))  ÓÈÏ©mÈˈ°« ujzéq|np rkjléjzq·tvmv {ytr
                         2
                         |qvtjsjΦ(x)