Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 224 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
{ºÎËm¯Ëä«°ÒääË¯ÒÓ©®ÒãÒÓˮө®ÁÓ}ÒºÓÈã
=+++=
23321331122122112
223),(
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
yxB

3
2
1
321
011
132
121
η
η
η
ξ
ξ
ξ
=

ÒäËÒ®äÈ¯Ò
011
132
121
Ë¹º¯ºÎÈm
3
Λ
}mȯÈÒÓ©®
ÁÓ}ÒºÓÈãmÒÈ
323121
2
2
2
12
2243)(
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
++=x

}ºº¯©®°ºm¹ÈÈË°
)(
1
x
ÒÒäËËäÈ¯Ò
011
132
121

{¯«ËmÈÎÓ©²¹¯Ò}ãÈÓ©²ÏÈȺ}ÈÏ©mÈË°«Ó˺²ºÒä©ä¹º°¯ºËÓÒËÈÏÒ°ºm
m}ºº¯©²}mȯÈÒÓ©®ÁÓ}ÒºÓÈãÒäËËÓÈÒºãËË¹¯º°º®ÒºÓ©®ã«Ò°°ã˺
mÈÓÒ«mÒ
|¹¯ËËãËÓÒË

zmȯÈÒÓ©®ÁÓ}ÒºÓÈã
)(x
ÒäËË lqjmvtjstp kqlmÓË}ºº¯ºä
ÈÏÒ°Ë
m
n
Λ
˰ãÒºÓmªºäÈÏÒ°Ë¹¯Ë°ÈmÒä}È}
=
=
n
i
i
i
x
1
2
)(
ξ
λ
Ë
λ
i
in
,[,]
∀=
1
ÓË}ºº¯©ËÒ°ãÈ
p°ãÒ }¯ºäË ºº Ò°ãÈ
λ
i
in
,[,]
=
1
¹¯ÒÓÒäÈ ãÒÏÓÈËÓÒ«
0
ÒãÒ
±
 º ºmº¯« º }mȯÈÒÓ©® ÁÓ}ÒºÓÈã m ÈÓÓºä ÈÏÒ°Ë ÒäËË
rjtvtq·nxrqpkql
˺¯ËäÈ

iã« }Èκ º }mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ m
n
Λ
°˰mË ÈÏÒ° m
}ºº¯ºäÁÓ}ÒºÓÈãÒäËË}ÈÓºÓÒ˰}Ò®mÒ
iº}ÈÏÈËã°mº
{º°¹ºãÏËä°«äËººääÈËäÈÒ˰}º®ÒÓ}ÒÒ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                    {ˆºÎËm¯Ëä«°Òääˈ¯ÒÓ©®­ÒãÒÓˮө®Á‚Ó}ÒºÓÈã
                    
                            B2 ( x, y ) = ξ1η1 + 3ξ 2η 2 − 2ξ1η 2 − 2ξ 2η1 + ξ1η3 + ξ 3η1 − ξ 2η3 − ξ 3η 2 = 
                                                                          
                                                                          1       −2       1    η1
                         = ξ1 ξ 2             ξ3 − 2            3    −1      η 2 
                                                                      1           −1       0    η3
                        
                                                            1     −2          1
                        ÒäË Ò®äȈ¯Ò‚ − 2                        3      − 1 ­‚ˈ¹º¯ºÎȈ m Λ3 }mȯȈÒÓ©®
                                                            1      −1         0
                        Á‚Ó}ÒºÓÈãmÒÈ
                        
                        
                                                      2 ( x ) = ξ12 + 3ξ 22 − 4ξ1ξ 2 + 2ξ1ξ 3 − 2ξ 2ξ 3 
                                                                                    
                                                                          1                                 −2         1
                        }ºˆº¯©®°ºm¹ÈÈˈ° 1 ( x ) ÒÒäËˈäȈ¯Ò‚ − 2                                   3      − 1 
                                                                          1                                  −1        0
          
          
          
         {¯«ËmÈÎÓ©²¹¯Ò}ãÈÓ©²ÏÈȺ}ÈÏ©mÈˈ°«Ó˺­²ºÒä©ä¹º°ˆ¯ºËÓÒË­ÈÏÒ°ºm
m}ºˆº¯©²}mȯȈÒÓ©®Á‚Ó}ÒºÓÈãÒäËˈÓÈÒ­ºãË˹¯º°ˆº®Ò‚º­Ó©®ã«Ò°°ã˺
mÈÓÒ«mÒ
          
          
 |¹¯ËËãËÓÒË    zmȯȈÒÓ©® Á‚Ó}ÒºÓÈã  (x )  ÒäËˈ lqjmvtjst€p kql m ÓË}ºˆº¯ºä
 
                 ­ÈÏÒ°Ëm Λn ˰ãÒºÓmªˆºä­ÈÏҰ˹¯Ë°ˆÈmÒä}È}
                         
                                                    n
                                         ( x ) = ∑ λ i ξ i2 Ë λ i , ∀i = [1, n] ÓË}ºˆº¯©ËÒ°ãÈ
                                                   i =1
                         

                         p°ãÒ }¯ºäË ˆºº Ò°ãÈ λ i , i = [1, n]  ¹¯ÒÓÒäÈ ˆ ãÒ                                 ÏÓÈËÓÒ« 0 ÒãÒ
                         ± ˆº ºmº¯«ˆ ˆº }mȯȈÒÓ©® Á‚Ó}ÒºÓÈã m ÈÓÓºä ­ÈÏÒ°Ë ÒäËˈ
                         rjtvtq·nxrqpkql
            
            
            
 ‘˺¯ËäÈ               iã« }Èκº }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ m Λn  °‚Ë°ˆm‚ˈ ­ÈÏÒ° m
                 }ºˆº¯ºäÁ‚Ó}ÒºÓÈãÒäËˈ}ÈÓºÓÒ˰}Ò®mÒ
        
  iº}ÈÏȈËã°ˆmº
   
      {º°¹ºã ςËä°«äˈººääȈËäȈÒ˰}º®ÒÓ‚}ÒÒ