Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 226 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
Óº®ÏÈäËÓº®¹Ë¯ËäËÓÓ©²
=
==
n
i
ikik
nk
2
],2[,
ξ
τ
ξ

°{©¹ºãÓÒäÏÈäËÓ¹Ë¯ËäËÓÓ©²}mȯÈÒÓººÁÓ}ÒºÓÈãÈ
)(
x
¹ºÁº¯
äãÈä
==
+=
=
=
n
i
ikik
i
n
i
i
nk
2
2
11
1
1
111
],2[;
)(
ξ
τ
ξ
ξ
ϕ
ϕ
ξ
ϕ
ξ

}ºº¯È«¹¯ÒmËË}¹¯Ë°ÈmãËÓÒ˺m}ÈÓºÓÒ˰}ºämÒËiË®°mÒËã
ÓºäÈ¯ÒÈm©¹ºãÓËÓÓº®ÏÈäËÓ©¹Ë¯ËäËÓÓ©²
nnn
n
n
T
ττ
ττ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕϕ
...0
............
...0
...
2
222
11
1
11
11
12
1111
=
ÒäËË º¹¯ËËãÒËãÓË¯ÈmÓ©®Óã ¹º°}ºã}
ϕ
11
0
 È ÏÈäËÓÈ
=
==
n
i
ikik
nk
2
],2[,
ξ
τ
ξ
ÓËm©¯ºÎËÓÓÈ« sº ºÈ äÈ¯ÒÈ
T
ÒäËË
º¯ÈÓ
ST=
1
°ä°ã˰mÒË}ºº¯È«m°mººË¯Ë«mã«
Ë°«äÈ¯ÒË®¹Ë¯Ë²ºÈ}Ò°}ºäºäÈÏÒ°
˺¯ËäÈº}ÈÏÈÓÈ
~ÈäËÈÓÒË[
ÈÏÒ° m }ºº¯ºä }mȯÈÒÓ©® ÁÓ}ÒºÓÈã ÒäËË ÒȺÓÈãÓ©® ÒãÒ
}ÈÓºÓÒ˰}Ò®  ÓË ËÒÓ°mËÓÓ©® ¯ÈmÓº }È} ÓË «mã«Ë°« ËÒÓ°mËÓÓ©ä
°Èä}ÈÓºÓÒ˰}Ò®ÒãÒÒȺÓÈãÓ©®mÒ}mȯÈÒÓººÁÓ}ÒºÓÈãÈm
n
Λ

j°°ã˺mÈÓÒËÏÓÈ}È}mȯÈÒÓººÁÓ}ÒºÓÈãÈ
s˰äº¯« ÓÈ ÓËËÒÓ°mËÓÓº° ÒȺÓÈãÓºº ÒãÒ }ÈÓºÓÒ˰}ºº ¹¯Ë°ÈmãË
ÓÒ« }mȯÈÒÓ©Ë ÁÓ}ÒºÓÈã© ºãÈÈ ¯«ºä mÈÎÓ©² °mº®°m qtkjéqjtzt}
ºÓº°ÒËãÓº º ˰ ÓË ÏÈmÒ°«Ò² º m©º¯È ÈÏÒ°È m
n
Λ
 |Óº® ÒÏ È}Ò²
     Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
    ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp
    
    
    
                    Óº®ÏÈäËÓº®¹Ë¯ËäËÓÓ©²
                  
                                                                         n
                                                               ξ k′ = ∑τ kiξ i ,       k = [2, n] 
                                                                        i =2
                  
                  °{©¹ºãÓÒäÏÈäËӂ¹Ë¯ËäËÓÓ©²}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈ  (x ) ¹ºÁº¯
                       ä‚ãÈä
                                                                                       n
                                                                                           ϕ1i
                                                               ξ
                                                              1
                                                             
                                                                 ′ =     ϕ 11 ( ξ 1 + ∑    ϕ
                                                                                               ξi )
                                                                                      i = 2 11      
                                                                      n
                                                             ξ ′ = τ ξ ; k = [2, n]
                                                              k ∑ ki i
                                                                    i =2
                  
                          }ºˆº¯È«¹¯ÒmËˈ}¹¯Ë°ˆÈmãËÓÒ Ëºm}ÈÓºÓÒ˰}ºämÒËiË®°ˆm҈Ëã 
                          ÓºäȈ¯ÒÈm©¹ºãÓËÓÓº®ÏÈäËÓ©¹Ë¯ËäËÓÓ©²
                      
                                                                                     ϕ12                     ϕ1n
                                                                  ϕ11          ϕ11            ...      ϕ11
                                                                                     ϕ11                     ϕ11
                                                      T =         0             τ 22          ...       τ 2n         
                                                                  ...            ...          ...        ...
                                                                  0             τ n2          ...       τ nn
                      
                      ÒäËˈ º¹¯ËËã҈Ëã  ÓË ¯ÈmÓ©® ӂã  ¹º°}ºã }‚ ϕ11 ≠ 0  È ÏÈäËÓÈ
                              n
                      ξ k′ = ∑τ kiξ i ,      k = [2, n]   ÓËm©¯ºÎËÓÓÈ« sº ˆºÈ äȈ¯ÒÈ                                    T  ÒäËˈ
                             i =2
                                                      −1
                      º­¯ÈˆÓ‚  S = T      °ä°ã˰ˆmÒË }ºˆº¯È«m°mº º˯Ë «mã«
                      ˈ°«äȈ¯ÒË®¹Ë¯Ë²ºÈ}Ò°}ºäºä‚­ÈÏÒ°‚
         
         
         ‘˺¯ËäȺ}ÈÏÈÓÈ



~ÈäËÈÓÒË[ÈÏÒ° m }ºˆº¯ºä }mȯȈÒÓ©® Á‚Ó}ÒºÓÈã ÒäËˈ ÒȺÓÈã Ó©® ÒãÒ
                      }ÈÓºÓÒ˰}Ò® mÒ ÓË ËÒÓ°ˆmËÓÓ©® ¯ÈmÓº }È} ÓË «mã«Ëˆ°« ËÒÓ°ˆmËÓÓ©ä
                      °Èä}ÈÓºÓÒ˰}Ò®ÒãÒÒȺÓÈã Ó©®mÒ}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈm Λn 
              
              
              
              
    j°°ã˺mÈÓÒËÏÓÈ}È}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈ
              
              
              
            s˰予¯« ÓÈ ÓËËÒÓ°ˆmËÓÓº°ˆ  ÒȺÓÈã Óºº ÒãÒ }ÈÓºÓÒ˰}ºº ¹¯Ë°ˆÈmãË
    ÓÒ« }mȯȈÒÓ©Ë Á‚Ó}ÒºÓÈã© º­ãÈÈ ˆ ¯«ºä mÈÎÓ©² °mº®°ˆm qtkjéqjtzt€}
    ºˆÓº°ÒˆËã Óº ˆº ˰ˆ  ÓË ÏÈmÒ°«Ò² ºˆ  m©­º¯È ­ÈÏÒ°È m Λn  |Óº® ÒÏ ˆÈ}Ò²