Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 227 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
Óº°ÒËãÓºº˰ÓËÏÈmÒ°«Ò²ºm©º¯ÈÈÏÒ°Èm
n
Λ
|Óº®ÒÏÈ}Ò²²È¯È}˯Ò
°Ò}«mã«Ë°«éjtmrkjléjzq·tvmv{ytr|qvtjsj
|¹¯ËËãËÓÒË

Ò°ãº ÓË ¯ÈmÓ©² Óã }ºªÁÁÒÒËÓºm }ÈÓºÓÒ˰}ºº È }mȯÈ
ÒÓºº ÁÓ}ÒºÓÈãÈ
)(
x
 ÓÈÏ©mÈË°« ˺ éjtmvu Ò ººÏÓÈÈË°«
rg
Φ

˺¯ËäÈ

cÈÓ}mȯÈÒÓººÁÓ}ÒºÓÈãÈm
n
Λ
ÓËÏÈmÒ°Òºm©º¯ÈÈÏÒ°È
iº}ÈÏÈËã°mº
º°ã˰mÒ¯ÈÓäÈ¯Ò©ÒãÒÓˮӺºÁÓ}ÒºÓÈãÈÓËÏÈmÒ°Òºm©
º¯ÈÈÏÒ°Èºªºä ÓËËÏÈmÒ°Ëºm©º¯ÈÈÏÒ°ÈÒ¯ÈÓäÈ¯Ò©¹º
¯ºÎÈË亮Òä}mȯÈÒÓººÁÓ}ÒºÓÈãÈ
v ¯º® °º¯ºÓ© m °Òã ˺¯Ëä  Ò  ¯ÈÓ äÈ¯Ò© }mȯÈÒÓºº
ÁÓ}ÒºÓÈãÈ¯ÈmËÓÒ°ãÓËÓãËm©²}ºªÁÁÒÒËÓºmm˺}ÈÓºÓÒ˰}ºämÒË
˺¯ËäÈº}ÈÏÈÓÈ
¯ÒÒ°°ã˺mÈÓÒÒÏÓÈ}ÈÏÓÈËÓÒ®}mȯÈÒÓººÁÓ}ÒºÓÈãÈº}ÈÏ©mÈË°«¹º
ãËÏÓ©äÒ°¹ºãϺmÈÓÒË°ãËÒ²˺²È¯È}˯ҰÒ}
|¹¯ËËãËÓÒË

°
Ò°ãº ¹ºãºÎÒËãÓ©² }ºªÁÁÒÒËÓºm ÒȺÓÈãÓºº
}ÈÓºÓÒ˰}ºº È }mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ
)(
x
m
n
Λ

ÓÈÏ©mÈË°«˺wvsvqznstuqtlnrxvuqtné|qq
°
Ò°ãºº¯ÒÈËãÓ©²}ºªÁÁÒÒËÓºmÒȺÓÈãÓºº}ÈÓºÓÒ˰}º
ºÈ}mȯÈÒÓººÁÓ}ÒºÓÈãÈ
)(
x
m
n
Λ
ÓÈÏ©mÈË°«˺vz
éq|jznstuqtlnrxvuqtné|qq
°
cÈÏÓº°äËÎ¹ºãºÎÒËãÓ©äÒº¯ÒÈËãÓ©äÒÓË}°ÈäÒÒÓ˯
ÒÒÓÈÏ©mÈË°«xqmtjzyévp }mȯÈÒÓººÁÓ}ÒºÓÈãÈ
)(x
m
n
Λ
ÒººÏÓÈÈË°«
sgn
Φ

˺¯ËäÈ

ÒÓ˯ÒÒ
}mȯÈÒÓ©²
ÁÓ}ÒºÓÈãºm
~ÓÈËÓÒ« ¹ºãºÎÒËãÓºº Ò º¯ÒÈËãÓºº ÒÓË}°ºm ÒÓ˯ÒÒ È
È}ÎË °ÒÓÈ¯© }mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ
)(x
m
n
Λ
ÓË ÏÈmÒ°«
º m©º¯È ÈÏÒ°È m }ºº¯ºä ªº ÁÓ}ÒºÓÈã ÒäËË ÒȺÓÈãÓ©®
}ÈÓºÓÒ˰}Ò®mÒ
cÈÏËã 
sËãÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



Óº°ÒˆËã Óº ˆº˰ˆ ÓËÏÈmÒ°«Ò²ºˆ m©­º¯È­ÈÏÒ°Èm Λn |Óº®ÒψÈ}Ò²²È¯È}ˆË¯Ò
°ˆÒ}«mã«Ëˆ°«éjtmrkjléjzq·tvmv{ytr|qvtjsj
         
         
         
 |¹¯ËËãËÓÒË   Ұ㺠ÓË ¯ÈmÓ©² ӂã  }ºªÁÁÒÒËӈºm }ÈÓºÓÒ˰}ºº mÒÈ }mȯÈ
 
               ˆÒÓºº Á‚Ó}ÒºÓÈãÈ  (x )  ÓÈÏ©mÈˈ°« ˺ éjtmvu Ò º­ºÏÓÈÈˈ°«
               rg Φ 
         
         
 ‘˺¯ËäÈ                 cÈÓ}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈm Λn ÓËÏÈmҰ҈ºˆm©­º¯È­ÈÏÒ°È
 
           
  iº}ÈÏȈËã°ˆmº
    
         º°ã˰ˆmÒ ¯ÈÓäȈ¯Ò©­ÒãÒÓˮӺºÁ‚Ó}ÒºÓÈãÈÓËÏÈmҰ҈ºˆm©
         ­º¯È­ÈÏҰȁºªˆºä‚ÓË­‚ˈÏÈmҰˈ ºˆm©­º¯È­ÈÏÒ°ÈÒ¯ÈÓäȈ¯Ò©¹º
         ¯ºÎÈË亮Òä}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈ
         
         v ¯‚º® °ˆº¯ºÓ© m °Òã‚ ˆËº¯Ëä  Ò  ¯ÈÓ äȈ¯Ò© }mȯȈÒÓºº
         Á‚Ó}ÒºÓÈãȯÈmËÓÒ°ã‚ÓËӂãËm©²}ºªÁÁÒÒËӈºmm˺}ÈÓºÓÒ˰}ºämÒË
    
    ‘˺¯ËäȺ}ÈÏÈÓÈ
         
         
         
         ¯ÒÒ°°ã˺mÈÓÒÒÏÓÈ}ÈÏÓÈËÓÒ®}mȯȈÒÓººÁ‚Ó}ÒºÓÈãȺ}ÈÏ©mÈˈ°«¹º
ãËÏÓ©äÒ°¹ºã ϺmÈÓÒ˰ãË‚ Ò²Ëº²È¯È}ˆË¯Ò°ˆÒ}
         
         
 |¹¯ËËãËÓÒË     ° Ұ㺠    ¹ºãºÎ҈Ëã Ó©²          }ºªÁÁÒÒËӈºm          ÒȺÓÈã Óºº
 
                       }ÈÓºÓÒ˰}ºº  mÒÈ }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ  (x )  m Λn 
                      ÓÈÏ©mÈˈ°«Ëºwvsv qznst€uqtlnrxvuqtné|qq
                  
                  ° Ұ㺺ˆ¯ÒȈËã Ó©²}ºªÁÁÒÒËӈºmÒȺÓÈã Óºº }ÈÓºÓÒ˰}º
                                º mÒÈ}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈ  (x ) m Λn ÓÈÏ©mÈˈ°«Ëºvz
                                éq|jznst€uqtlnrxvuqtné|qq
                           
                           °cÈÏÓº°ˆ äË΂¹ºãºÎ҈Ëã Ó©äÒºˆ¯ÒȈËã Ó©äÒÓË}°ÈäÒÒÓ˯
                                ÒÒ ÓÈÏ©mÈˈ°« xqmtjzyévp }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ  (x )  m Λn 
                                Òº­ºÏÓÈÈˈ°« sgn Φ 
           
           
           
 ‘˺¯ËäÈ                 ~ÓÈËÓÒ« ¹ºãºÎ҈Ëã Óºº Ò ºˆ¯ÒȈËã Óºº ÒÓË}°ºm ÒÓ˯ÒÒ È
 
  ÒÓ˯ÒÒ                ˆÈ}ÎË °ÒÓȈ‚¯© }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ  (x )  m Λn  ÓË ÏÈmÒ°«ˆ
 }mȯȈÒÓ©²            ºˆ m©­º¯È ­ÈÏÒ°È m }ºˆº¯ºä ªˆºˆ Á‚Ó}ÒºÓÈã ÒäËˈ ÒȺÓÈã Ó©®
 Á‚Ó}ÒºÓÈãºm             }ÈÓºÓÒ˰}Ò® mÒ