Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 229 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
ÒÏm˰Ó©² º äºÎÓº m˯ÎÈ ººÓÈÒäËËÓ˯ÒmÒÈãÓ©Ë ¯ËËÓÒ« È
°ã˺mÈËãÓºªãËäËÓ
x
äºÎË©ÓËÓãËm©ä
v¯º®°º¯ºÓ©ÒÏ¯ÈmËÓ°mÈ  ¹ºãºÎÒËãÓº°Ò Ò°Ëã
λ
i
im;[,]
=
1
Ò
µ
i
iq
;[,]
=
1
ÈÈ}ÎË°ãºmÒ®
],1[,0;],1[,0 npiki
ii
+====
κη
°ãË
ËºÈ}ÎË
κ
i
ip==
01;[,]
ºm°mººË¯ËºÏÓÈÈË°ãËÈ«ÒÏ
ºÓº¯ºÓÈ« °Ò°ËäÈ
],1[;
1
ns
n
j
jsjs
==
=
ξ
θκ
°ÓËm©¯ºÎËÓÓº® º°Óºm
Óº®äÈ¯ÒË®äºÎËÒäËºã}º¯ÒmÒÈãÓºË¯ËËÓÒËÈªãËäËÓ
x
º«ÏÈÓ
©ÓãËm©ä
ºãËÓÓºË ¹¯ºÒmº¯ËÒË ¹º}ÈÏ©mÈË ºÒºÓº°¹¯Ë¹ºãºÎËÓÒ« º ºä
º
kp
<

°
kÓÈãºÒÓ©äÒ ¯È°°ÎËÓÒ«äÒ ¹º}ÈÏ©mÈËäº ÓËmºÏäºÎÓºÒ °ººÓºËÓÒË
pk
>
ºªºä¹¯Ò²ºÒä}ÏÈ}ãËÓÒº
pk
=

°
º˺¯ËäË
qm =
Ò¹ººä
qpmk
=

˺¯ËäÈº}ÈÏÈÓÈ
iã« Ò°°ã˺mÈÓÒ« ÏÓÈ}È ÏÓÈËÓÒ® }mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ mmËËä m
¯È°°äº¯ËÓÒË¹ºÓ«ÒË˺ÏÓÈ}ºmº®º¹¯ËËãËÓÓº°Ò
|¹¯ËËãËÓÒË

°
zmȯÈÒÓ©® ÁÓ}ÒºÓÈã
)(x
ÓÈÏ©mÈË°« wvsvqznstv vwénln
snttutjwvlwévxzéjtxzkn
Λ
+
˰ãÒ
0)(
>x
ã«ãººÓË
ÓãËmºº
x
+

°
zmȯÈÒÓ©® ÁÓ}ÒºÓÈã
)(x
ÓÈÏ©mÈË°« vzéq|jznstv vwénln
snttutjwvlwévxzéjtxzkn
Λ
˰ãÒ
0)(
<x
ã«ãººÓË
ÓãËmºº
x

°
p°ãÒÎË
+
ÒãÒ
°ºm¹ÈÈË°
Λ
ººmº¯« º }mȯÈÒÓ©®
ÁÓ}ÒºÓÈã
)(x
«mã«Ë°« wvsvqznstv vzéq|jznstv vwénln
snttu
°
p°ãÒÎË
)0)((0)(
<>
xx
ã« m°Ë²
Λx
ººmº¯« º}mÈ
¯ÈÒÓ©®ÁÓ}ÒºÓÈã«mã«Ë°«wvsvqznstvvzéq|jznstvwvsy
vwénlnsnttu
cÈÏËã 
sËãÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



                  ÒÏm˰ˆÓ©² ˆº äºÎÓº ‚ˆm˯ÎȈ  ˆº ºÓÈ ÒäËˈ Óˈ¯ÒmÒÈã Ó©Ë ¯Ë ËÓÒ« È
                  °ã˺mȈËã ÓºªãËäËӈxäºÎˈ­©ˆ ÓËӂãËm©ä
            
                  v ¯‚º® °ˆº¯ºÓ© ÒÏ ¯ÈmËÓ°ˆmÈ   ¹ºãºÎ҈Ëã Óº°ˆÒ Ò°Ëã λ i ; i = [1, m] 
                  Ò µ i ; i = [1, q ] ȈÈ}ÎË‚°ãºmÒ® η i = 0 , ∀i = [1, k ] ; κ i = 0 , ∀i = [ p + 1, n] °ãË
                  ‚ˈˆºˆÈ}ÎË κ i = 0 ; i = [1, p]  ˆºm°mº º˯Ë ºÏÓÈÈˈ°ãË‚ È«ÒÏ
                                                                              n
                     ºÓº¯ºÓÈ« °Ò°ˆËäÈ κ s =                      ∑θ sj ξ j ; s = [1, n]  ° ÓËm©¯ºÎËÓÓº® º°Óºm
                                                                             j =1
                 Óº®äȈ¯ÒË®äºÎˈÒäˈ ˆºã }ºˆ¯ÒmÒÈã ÓºË¯Ë ËÓÒËȪãËäËӈxº­«ÏÈÓ
                 ­©ˆ ӂãËm©ä
                         
                 ºã‚ËÓÓºË ¹¯ºˆÒmº¯ËÒË ¹º}ÈÏ©mÈˈ º Ò­ºÓº°ˆ  ¹¯Ë¹ºãºÎËÓÒ« º ˆºä
                 ˆº k < p 
                 
                 
            ° kÓÈãºÒÓ©äÒ ¯È°°‚ÎËÓÒ«äÒ ¹º}ÈÏ©mÈËä ˆº ÓËmºÏäºÎÓº Ò °ººˆÓº ËÓÒË
                 k > p ºªˆºä‚¹¯Ò²ºÒä}ÏÈ}ã ËÓÒ ˆº k = p 
            
            
            °ºˆËº¯ËäË m = q Ò¹ºˆºä‚ k − m = p − q 
     
     ‘˺¯ËäȺ}ÈÏÈÓÈ
         
         
         
         iã« Ò°°ã˺mÈÓÒ« ÏÓÈ}È ÏÓÈËÓÒ® }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ mmËËä m
¯È°°äºˆ¯ËÓÒ˹ºÓ«ˆÒË˺ÏÓÈ}ºmº®º¹¯ËËãËÓÓº°ˆÒ
         
         
 |¹¯ËËãËÓÒË    °zmȯȈÒÓ©® Á‚Ó}ÒºÓÈã  (x )  ÓÈÏ©mÈˈ°« wvsv qznstv vwénln
 
                     sntt€utjwvlwévxzéjtxzkn Ω + ⊂ Λ ˰ãÒ  ( x ) > 0 ã«ã ­ººÓË
                                ӂãËmºº x ∈ Ω + 
                           
                           °zmȯȈÒÓ©® Á‚Ó}ÒºÓÈã  (x )  ÓÈÏ©mÈˈ°« vzéq|jznstv vwénln
                                sntt€utjwvlwévxzéjtxzkn Ω − ⊂ Λ ˰ãÒ  ( x ) < 0 ã«ã ­ººÓË
                                ӂãËmºº x ∈ Ω − 
                           
                           °p°ãÒ ÎË Ω  ÒãÒ Ω  °ºm¹ÈÈˈ ° Λ  ˆº ºmº¯«ˆ ˆº }mȯȈÒÓ©®
                                           +

                               Á‚Ó}ÒºÓÈã  (x )  «mã«Ëˆ°« wvsv qznstv vzéq|jznstv  vwénln
                               sntt€u
                           
                           °p°ãÒ ÎË  ( x ) > 0 ( ( x ) < 0)  ã« m°Ë² x ∈ Λ  ˆº ºmº¯«ˆ ˆº }mÈ
                               ¯ÈˆÒÓ©®Á‚Ó}ÒºÓÈã«mã«Ëˆ°«wvsv qznstv vzéq|jznstv wvsy
                               vwénlnsntt€u