Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 231 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
˺¯ËäÈ

z¯Ò˯Ү
vÒãm˰¯È
iã«¹ºãºÎÒËãÓº®º¹¯ËËãËÓÓº°Ò}mȯÈÒÓººÁÓ}ÒºÓÈãÈm
n
Λ
Ó˺²ºÒäº Ò º°ÈºÓº º© m°Ë ãÈmÓ©ËäÒÓº¯©˺ äÈ¯Ò©
ÒäËÒËmÒ
],1[;
...
............
...
...
det
21
22221
11211
nk
kkkk
k
k
=
ϕϕϕ
ϕϕϕ
ϕϕϕ
©ãÒ¹ºãºÎÒËãÓ©äÒ
iº}ÈÏÈËã°mºº°ÈºÓº°Ò
°
{º°¹ºãÏËä°«äËººääÈËäÈÒ˰}º®ÒÓ}ÒÒ
iã«
k
º°ÈºÓº°ºËmÒÓÈiº¹°ÒäºÒÏ¹ºãºÎÒËãÓº°ÒãÈmÓ©²
äÒÓº¯ºmäÈ¯Ò©}mȯÈÒÓººÁÓ}ÒºÓÈãÈ¹º¯«}Èº
1
= nk
m}ãÒ
ËãÓº°ãËËmºÏäºÎÓº°¹¯ÒmËËÓÒ«}mȯÈÒÓººÁÓ}ÒºÓÈãÈº
1n
¹Ë¯ËäËÓÓ©²}mÒ
=
=
1
1
2
)(
n
i
i
x
ξ

°
º}ÈÎËäºmªºä°ãÈËº°ÈºÓº°ËÒäËä˰ºÒã«}mȯÈ
ÒÓ©²ÁÓ}ÒºÓÈãºmÏÈmÒ°«Ò²º
n
¹Ë¯ËäËÓÓ©²
{m©¯ÈÎËÓÒÒã«}mȯÈÒÓººÁÓ}ÒºÓÈãÈÏÈmÒ°«˺º
n
¹Ë¯ËäËÓÓ©²
ËãÒä°ãÈÈËä©Ë°ºË¯ÎÈÒË
ξ
Q
2
1
1
1
1
1
1
2)(
nnn
n
k
n
k
nkkn
n
i
ikki
x
ξ
ϕ
ξ
ξ
ϕ
ξ
ξ
ϕ
++=
∑∑
=
=
=

imº®ÓÈ« °ääÈ m ¹¯Èmº® ȰÒ ªºº ¯ÈmËÓ°mÈ ˰ }mȯÈÒÓ©®
ÁÓ}ÒºÓÈã
)(
x
 ÏÈmÒ°«Ò® º
1
n
¹Ë¯ËäËÓÓº® ¹¯ÒËä ˺ ãÈmÓ©Ë
äÒÓº¯© °ºm¹ÈÈ ° ãÈmÓ©äÒ äÒÓº¯ÈäÒ
)(
x
º ¹º¯«}È
1
n
m}ãÒËãÓº }ºº¯©Ë ¹º ¹¯Ë¹ºãºÎËÓÒÒÓ}ÒÒ ¹ºãºÎÒËãÓ©
|°È °ãËË º }mȯÈÒÓ©® ÁÓ}ÒºÓÈã
)(
x
¹ºãºÎÒËãÓº
º¹¯ËËãËÓÓ©®Òã«Ó˺°˰mËÓËm©¯ºÎËÓÓÈ«ÏÈäËÓÈ¹Ë¯ËäËÓÓ©²
]1,1[;
1
1
==
=
nk
i
n
i
kik
ησ
ξ

¹¯Òmº«È«˺}}ÈÓºÓÒ˰}ºämÒ
=
=
1
1
2
)(
n
i
i
x
η

cÈÏËã 
sËãÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



    ‘˺¯ËäÈ            i㫹ºãºÎ҈Ëã Óº®º¹¯ËËãËÓÓº°ˆÒ}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈm Λn 
                 Ó˺­²ºÒäº Ò º°ˆÈˆºÓº ˆº­© m°Ë ãÈmÓ©Ë äÒÓº¯© ˺ äȈ¯Ò©
     z¯ÒˆË¯Ò®
    vÒãm˰ˆ¯È         ÒäË ÒËmÒ
                                                               ϕ11 ϕ12                ... ϕ1k
                                                               ϕ    ϕ 22              ... ϕ 2k
                                                            det 21                                   ; k = [1, n] 
                                                                ...  ...              ... ...
                                                               ϕ k1 ϕ k 2             ... ϕ kk
                        
                        ­©ãÒ¹ºãºÎ҈Ëã Ó©äÒ
           
           
  iº}ÈÏȈËã°ˆmºº°ˆÈˆºÓº°ˆÒ
   
   
      °{º°¹ºã ςËä°«äˈººääȈËäȈÒ˰}º®ÒÓ‚}ÒÒ
      
           iã«k º°ˆÈˆºÓº°ˆ ºËmÒÓÈiº¹‚°ˆÒ䈺ÒϹºãºÎ҈Ëã Óº°ˆÒãÈmÓ©²
           äÒÓº¯ºmäȈ¯Ò©}mȯȈÒÓººÁ‚Ó}ÒºÓÈãȹº¯«}Ⱥ k = n − 1 m}ã Ò
           ˆËã Óº°ãË‚ˈmºÏäºÎÓº°ˆ ¹¯ÒmËËÓÒ«}mȯȈÒÓººÁ‚Ó}ÒºÓÈãȺˆ n − 1 
                                                                  n −1
                  ¹Ë¯ËäËÓÓ©²}mÒ‚  ( x ) =                    ∑ξ i2 
                                                                  i =1
                
           °º}ÈÎË䈺mªˆºä°ã‚È˺°ˆÈˆºÓº°ˆ ­‚ˈÒäˈ ä˰ˆºÒã«}mȯÈ
                ˆÒÓ©²Á‚Ó}ÒºÓÈãºmÏÈmÒ°«Ò²ºˆn ¹Ë¯ËäËÓÓ©²
           
                {m©¯ÈÎËÓÒÒã«}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈÏÈmÒ°«Ëººˆ n¹Ë¯ËäËÓÓ©²
                m©ËãÒä°ãÈÈËä©Ë°º˯ÎȝÒË ξ Q 
           
                                                            n −1n −1                   n −1
                                                 ( x ) = ∑ ∑ϕ kiξ k ξ i + 2 ∑ϕ knξ k ξ n + ϕ nnξ n2 
                                                            k =1 i =1                 k =1
           
                  imº®ÓÈ« °‚ääÈ m ¹¯Èmº® ȰˆÒ ªˆºº ¯ÈmËÓ°ˆmÈ ˰ˆ  }mȯȈÒÓ©®
                  Á‚Ó}ÒºÓÈã  ∗ (x )  ÏÈmÒ°«Ò® ºˆ n − 1  ¹Ë¯ËäËÓÓº® ¹¯ÒËä ˺ ãÈmÓ©Ë
                  äÒÓº¯© °ºm¹ÈÈ ˆ ° ãÈmÓ©äÒ äÒÓº¯ÈäÒ  (x )  º ¹º¯«}È n − 1 
                  m}ã ҈Ëã Óº }ºˆº¯©Ë ¹º ¹¯Ë¹ºãºÎËÓÒ  ÒÓ‚}ÒÒ ¹ºãºÎ҈Ëã Ó©
                  |ˆ° È °ãË‚ˈ ˆº }mȯȈÒÓ©® Á‚Ó}ÒºÓÈã  ∗ (x )  ¹ºãºÎ҈Ëã Óº
                  º¹¯ËËãËÓÓ©®Òã«Ó˺°‚Ë°ˆm‚ˈÓËm©¯ºÎËÓÓÈ«ÏÈäËÓȹ˯ËäËÓÓ©²
           
                                                                    n −1
                                                            ξ k = ∑σ kiηi ; k = [1, n − 1] 
                                                                    i =1
                                                                                                      n −1
                  ¹¯Òmº«È«Ëº}}ÈÓºÓÒ˰}ºä‚mÒ‚  ∗ ( x ) =                                    ∑ηi2 
                                                                                                      i =1