Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 232 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
{©¹ÒËä ¹¯Ë°ÈmãËÓÒË }mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ
)(x
mÓºm©²¹Ë¯Ë
äËÓÓ©²
2
1
1
1
1
2
2)(
nnn
n
i
n
i
in
n
i
i
x
ξ
ϕ
ξ
ηϕη
+
+=
=
=
Òm©ËãÒämÓËä¹ºãÓ©Ë}mȯÈ©
2
1
1
22
1
1
222
1
1
2
)()2()(
nnn
n
i
in
n
i
innnninn
i
in
n
i
i
x
ξ
ϕ
ζ
ξ
ϕϕ
ξ
ϕ
ξ
ηϕη
+=
+
+
+=
=
=
=

Ë
]1,1[;;
1
1
2
=
+=
=
=
ni
ninii
n
i
innnnn
ξ
ϕη
ζ
ϕϕϕ

{äÈ¯ÒÓºämÒËªÏÈäËÓ¹Ë¯ËäËÓÓ©²äºÎÓºÏȹҰÈ}È}
n
n
nn
n
n
n
n
ξ
η
η
η
ϕ
ϕ
ϕ
ξ
ζ
ζ
ζ
1
2
1
,1
,2
,1
1
2
1
10000
1000
010
001
=
Ò¹º°}ºã}º¹¯ËËãÒËãËËäÈ¯Ò©ºãÒËÓºÓã«ºªÈÏÈäËÓÈÓËm©
¯ºÎËÓÓÈ«
°sÈ}ºÓË m °Òã °ã˰mÒ«  º¹¯ËËãÒËã äÈ¯Ò© }mȯÈÒÓºº
ÁÓ}ÒºÓÈãÈ°º²¯ÈÓ«ËÏÓÈ}¹¯ÒÏÈäËÓËÈÏÒ°È~ÓÈ}º¹¯ËËãÒËã«äÈ¯Ò©
}mȯÈÒÓºº ÁÓ}ÒºÓÈãÈmÒ°²ºÓºä ÈÏÒ°Ë ¹ºãºÎÒËãÓ©® ¹º°}ºã}
ªºº¹¯ËËãÒËãÒäËËmÒ
det
...
...
... ... ... ...
...
ϕϕ ϕ
ϕϕ ϕ
ϕϕ ϕ
11 12 1
21 22 2
12
n
n
nn nn
Ò«mã«Ë°«ãÈmÓ©ääÒÓº¯ºä¹º¯«}È
n
sººÈÒÏm©¯ÈÎËÓÒ«ã«
)(x
m
}ºÓËÓºä ÈÏÒ°Ë ä© ¹ºãÈËä º º¹¯ËËãÒËã äÈ¯Ò© }mȯÈÒÓºº
ÁÓ}ÒºÓÈãÈ
)(
x
¯ÈmËÓ
′′
ϕ
nn
ºªºä
′′
>
ϕ
nn
0
ÒäºÎÓº°ËãÈÏÈäËÓ¹Ë
¯ËäËÓÓ©²
ξ
ϕ
nnnn
=
′′
 ¹¯Òmº«}}ÈÓºÓÒ˰}ºä  ÁÓ}ÒºÓÈã
=
=
n
i
i
x
1
2
)(
ζ

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



              {©¹Ò Ëä ¹¯Ë°ˆÈmãËÓÒË }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ  (x )  m Óºm©² ¹Ë¯Ë
              äËÓÓ©²
                                                                n −1       n −1
                                                    ( x ) = ∑ηi2 + 2 ∑ϕ in
                                                                         ′ ηi ξ n + ϕ nnξ n2 
                                                                i =1        i =1
          
                 Òm©ËãÒämÓË乺ãÓ©Ë}mȯȈ©
          
                                    n −1                                                 n −1               n −1
                          ( x ) = ∑ (ηi2 + 2ϕ in           ′ 2ξ n2 ) + (ϕ nn − ∑ϕ in
                                               ′ ηi ξ n + ϕ in                     ′ 2 )ξ n2 = ∑ζ i2 + ϕ nn
                                                                                                         ′′ ξ n2 
                                     i =1                                                 i =1              i =1
          
                 Ë
                                                         n −1
                                         ′′ = ϕ nn − ∑ ϕ in
                                       ϕ nn              ′ 2 ; ζ i = ηi + ϕ in
                                                                            ′ ξ n ; i = [1, n − 1] 
                                                         i =1
          
          
                 {äȈ¯ÒÓºämÒ˪ˆ‚ÏÈäËӂ¹Ë¯ËäËÓÓ©²äºÎÓºÏȹҰȈ }È}
                 
                                                    ζ1    1 0  0 ϕ1′, n      η1
                                                    ζ2    0 1  0 ϕ 2, n      η2
                                                     =                   
                                                   ζ n −1 0 0 0 1 ϕ n′ −1, n η n −1
                                                    ξn    0 0 0 0      1      ξn
                                                     
                 Ò¹º°}ºã }‚º¹¯ËËã҈Ëã ËËäȈ¯Ò©ºˆãÒËÓºˆӂ㫈ºªˆÈÏÈäËÓÈÓËm©
                 ¯ºÎËÓÓÈ«
          
          °sÈ}ºÓË m °Òã‚ °ã˰ˆmÒ«  º¹¯ËËã҈Ëã  äȈ¯Ò© }mȯȈÒÓºº
               Á‚Ó}ÒºÓÈãȰº²¯ÈӫˈÏÓÈ}¹¯ÒÏÈäËÓË­ÈÏÒ°È~ÓÈ}º¹¯ËËã҈Ëã«äȈ¯Ò©
               }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ m Ò°²ºÓºä ­ÈÏÒ°Ë ¹ºãºÎ҈Ëã Ó©® ¹º°}ºã }‚
               ªˆºˆº¹¯ËËã҈Ëã ÒäËˈmÒ
          
                                                             ϕ11 ϕ12               ... ϕ1n
                                                             ϕ21 ϕ22               ... ϕ2 n
                                                         det                                     
                                                             ... ...               ... ...
                                                             ϕn1 ϕn 2              ... ϕ nn
          
                 Ò«mã«Ëˆ°«ãÈmÓ©ääÒÓº¯ºä¹º¯«}È n sºˆºÈÒÏm©¯ÈÎËÓÒ«ã«  (x ) m
                 }ºÓËÓºä ­ÈÏÒ°Ë ä© ¹ºã‚ÈËä ˆº º¹¯ËËã҈Ëã  äȈ¯Ò© }mȯȈÒÓºº
                 Á‚Ó}ÒºÓÈãÈ  (x ) ¯ÈmËÓ ϕnn
                                              ′′ ºªˆºä‚ ϕnn
                                                             ′′ > 0 ÒäºÎÓº°ËãȈ ÏÈäËӂ¹Ë
                 ¯ËäËÓÓ©² ζn = ξn               ϕ nn
                                                   ′′  ¹¯Òmº«‚  } }ÈÓºÓÒ˰}ºä‚ mÒ‚ Á‚Ó}ÒºÓÈã
                              n
                  ( x ) = ∑ ζ i2 
                            i =1