Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 233 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
vã˺mÈËãÓº }mȯÈÒÓ©® ÁÓ}ÒºÓÈã
)(x
¹ºãºÎÒËãÓº º¹¯ËËãËÓ
ã« Ò°ãÈ ¹Ë¯ËäËÓÓ©²
n
 È ÏÓÈÒ m °Òã äÈËäÈÒ˰}º® ÒÓ}ÒÒ ã«
ãººÒ°ãÈ¹Ë¯ËäËÓÓ©²
iº°ÈºÓº°º}ÈÏÈÓÈ

iº}ÈÏÈËã°mºÓ˺²ºÒ亰Ò}¯Ò˯ҫvÒãm˰¯È¹ºãºÎÒËãÓº®º¹¯ËËãËÓ
Óº°Ò }mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ ¹¯ÒmºÒ°«m¯ÈÏËãË Ùpm}ãÒºmº ¹¯º°¯ÈÓ°mºµ
¹
j°²º«ÒÏ}¯Ò˯ҫvÒãm˰¯Èã«¹ºãºÎÒËãÓº®º¹¯ËËãËÓÓº°Ò}mȯÈÒ
ÓººÁÓ}ÒºÓÈãÈäºÎÓº¹ºãÒÈÓÈãºÒÓ©®}¯Ò˯Үº¯ÒÈËãÓº®º¹¯ËËãËÓ
Óº°Ò}mȯÈÒÓººÁÓ}ÒºÓÈãÈ
vã˰mÒË

iã« º¯ÒÈËãÓº® º¹¯ËËãËÓÓº°Ò }mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ m
n
Λ
Ó˺²ºÒäºÒº°ÈºÓºº©ãÈmÓ©ËäÒÓº¯©ËÓºº¹º¯«
}È äÈ¯Ò© ÁÓ}ÒºÓÈãÈ ©ãÒ ¹ºãºÎÒËãÓ© È ÓËËÓºº¹º¯«}È
º¯ÒÈËãÓ©
iº}ÈÏÈËã°mº
° }mȯÈÒÓ©® ÁÓ}ÒºÓÈã
)(
x
º¯ÒÈËãÓº º¹¯ËËãËÓÓ©® ºÈ
ÁÓ}ÒºÓÈã
)(
x
ËºËmÒÓº¹ºãºÎÒËãÓº º¹¯ËËãËÓÓ©ä¯ÒäËÓ«« }
ÓËä}¯Ò˯ҮvÒãm˰¯È¹ºãºÎÒËãÓº®º¹¯ËËãËÓÓº°Ò¹ºãÒäã«ãÈm
Óºº äÒÓº¯È
k
º ¹º¯«}ÈÒ°¹ºãϺmÈmãÒÓˮӺË°mº®°mº º¹¯ËËãÒËã« °
ãºmÒË
],1[;0
...
............
...
...
det)1(
...
............
...
...
det
21
22221
11211
21
22221
11211
nk
kkkk
k
k
k
kkkk
k
k
=>=
ϕϕϕ
ϕϕϕ
ϕϕϕ
ϕϕϕ
ϕϕϕ
ϕϕϕ

|}ÈÒ°ãËËº}ÈÏ©mÈËäºËm˯ÎËÓÒË
vã˰mÒËº}ÈÏÈÓº
cÈÏËã 
sËãÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



                  vã˺mȈËã Óº }mȯȈÒÓ©® Á‚Ó}ÒºÓÈã  (x )  ¹ºãºÎ҈Ëã Óº º¹¯ËËãËÓ
                  ã« Ò°ãÈ ¹Ë¯ËäËÓÓ©² n  È ÏÓÈ҈ m °Òã‚ äȈËäȈÒ˰}º® ÒÓ‚}ÒÒ ã«
                  ã ­ººÒ°ãȹ˯ËäËÓÓ©²
           
           
     iº°ˆÈˆºÓº°ˆº}ÈÏÈÓÈ
         
         
         iº}ÈÏȈËã °ˆmºÓ˺­²ºÒ亰ˆÒ}¯ÒˆË¯Ò«vÒã m˰ˆ¯È¹ºãºÎ҈Ëã Óº®º¹¯ËËãËÓ
Óº°ˆÒ }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ ¹¯Òmº҈°« m ¯ÈÏËãË Ùpm}ãÒºmº ¹¯º°ˆ¯ÈÓ°ˆmºµ
¹
         
         
         
         j°²º«ÒÏ}¯ÒˆË¯Ò«vÒã m˰ˆ¯È㫹ºãºÎ҈Ëã Óº®º¹¯ËËãËÓÓº°ˆÒ}mȯȈÒ
ÓººÁ‚Ó}ÒºÓÈãÈäºÎÓº¹ºã‚҈ ÈÓÈãºÒÓ©®}¯ÒˆË¯Ò®ºˆ¯ÒȈËã Óº®º¹¯ËËãËÓ
Óº°ˆÒ}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈ
         
         
         
 vã˰ˆmÒË       iã« ºˆ¯ÒȈËã Óº® º¹¯ËËãËÓÓº°ˆÒ }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ m
           Λn Ó˺­²ºÒäºÒº°ˆÈˆºÓºˆº­©ãÈmÓ©ËäÒÓº¯©ˈӺº¹º¯«
                  }È äȈ¯Ò© Á‚Ó}ÒºÓÈãÈ ­©ãÒ ¹ºãºÎ҈Ëã Ó© È ÓËˈӺº ¹º¯«}È
                  ºˆ¯ÒȈËã Ó©
         
         
  iº}ÈÏȈËã°ˆmº 
   
   
          ‚°ˆ  }mȯȈÒÓ©® Á‚Ó}ÒºÓÈã  (x )  ºˆ¯ÒȈËã Óº º¹¯ËËãËÓÓ©® ˆºÈ
            Á‚Ó}ÒºÓÈã −  (x )  ­‚ˈ ºËmÒÓº ¹ºãºÎ҈Ëã Óº º¹¯ËËãËÓÓ©ä ¯ÒäËÓ«« }
            ÓËä‚}¯ÒˆË¯Ò®vÒã m˰ˆ¯È¹ºãºÎ҈Ëã Óº®º¹¯ËËãËÓÓº°ˆÒ¹ºã‚Òäã«ãÈm
            Óºº äÒÓº¯È kº ¹º¯«}È Ò°¹ºã ϺmÈm ãÒÓˮӺË °mº®°ˆmº º¹¯ËËã҈Ëã« ‚°
            ãºmÒË
            
            
                           − ϕ11       − ϕ12       ... − ϕ1k                    ϕ11 ϕ12                   ... ϕ1k
                           − ϕ 21      − ϕ 22      ... − ϕ 2k                   ϕ    ϕ 22                 ... ϕ 2k
                   det                                              = (−1) k det 21                                     > 0 ; ∀k = [1, n] 
                             ...    ...            ...   ...                     ...  ...                 ...  ...
                           − ϕ k1 − ϕ k 2          ... − ϕ kk                   ϕ k1 ϕ k 2                ... ϕ kk
            
            
            |ˆ}‚ÈÒ°ãË‚ˈº}ÈÏ©mÈËäºË‚ˆm˯ÎËÓÒË
    
    
    vã˰ˆmÒ˺}ÈÏÈÓº