Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 230 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
˺¯ËäÈ

lÈ}°ÒäÈãÓÈ«¯ÈÏä˯Ӻ°¹º¹¯º°¯ÈÓ°mÈÓÈ}ºº¯ºä}mȯÈÒ
Ó©®ÁÓ}ÒºÓÈã ¹ºãºÎÒËãÓºº¯ÒÈËãÓº º¹¯ËËãËÓ ¯ÈmÓ«Ë°«
¹ºãºÎÒËãÓºäº¯ÒÈËãÓºäÒÓË}°ÒÓ˯ÒÒªººÁÓ}Òº
ÓÈãÈ
iº}ÈÏÈËã°mº
vãËËÒÏ˺¯Ëä©ÒºËmÒÓºº¯ÈmËÓ°mÈÒ°ãÈ¹ºãºÎÒËãÓ©²º¯Ò
ÈËãÓ©² ªãËäËÓºm äÈ¯Ò© }mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ m ÒȺÓÈãÓºä
¹¯Ë°ÈmãËÓÒÒ¯ÈÏä˯Ӻ°Ò¹º¹¯º°¯ÈÓ°mÈ


{ ÈãÒË  ¹¯ÒmËËÓ© ²È¯È}˯ҰÒ}Ò º°ÓºmÓ©² Ò¹ºm }mȯÈÒÓ©²
ÁÓ}ÒºÓÈãºm
Ò¹
}mȯÈÒÓºº
ÁÓ}ÒºÓÈãÈ
cÈÓ
ºãºÎÒ
ËãÓ©®
ÒÓË}°
ÒÓ˯ÒÒ
|¯ÒÈ
ËãÓ©®
ÒÓË}°
ÒÓ˯ÒÒ
¯Òä˯}ÈÓºÓÒ˰}ººmÒÈ
Ívsvqznstv
vwénlnsnttp
= n
= n
=
0
=
=
n
i
i
x
1
2
)(
ξ
Ívsvqznstv
wvsy
vwénlnsnttp
< n
< n

=
0
=
<=
k
i
i
nkx
1
2
;)(
ξ
Ìzéq|jznstv
vwénlnsnttp
= n
=
0
= n
=
=
k
i
i
x
1
2
)1()(
ξ
Ìzéq|jznstv
wvsy
vwénlnsnttp
< n
=
0
< n
=
<=
k
i
i
nkx
1
2
;_1()(
ξ
Íévqokvstp
n
n
n
npkx
pk
ki
i
k
i
i
++=
+
+==
;)1()(
1
2
1
2
ξ
ξ
Òjisq|j
{ ¯«Ë ¹¯Ò}ãÈÓ©² ÏÈÈ º}ÈÏ©mÈË°« Ó˺²ºÒä©ä ¹¯ºmËËÓÒË Ò°°ã˺mÈÓÒ«
ÏÓÈ}ºmº® º¹¯ËËãËÓÓº°Ò }mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ ËÏ ¹¯ÒmËËÓÒ« ˺ }
ÒȺÓÈãÓºä  ºÓºË Ó˺²ºÒäºË Ò º°ÈºÓºË °ãºmÒË ¹ºãºÎÒËãÓº®
º¹¯ËËãËÓÓº°Ò}mȯÈÒÓººÁÓ}ÒºÓÈãÈÈË
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



  ‘˺¯ËäÈ          lÈ}°ÒäÈã ÓÈ«¯ÈÏä˯Ӻ°ˆ ¹º¹¯º°ˆ¯ÈÓ°ˆmÈÓÈ}ºˆº¯ºä}mȯȈÒ
             Ó©® Á‚Ó}ÒºÓÈã ¹ºãºÎ҈Ëã Óº ºˆ¯ÒȈËã Óº  º¹¯ËËãËÓ ¯Èmӫˈ°«
                    ¹ºãºÎ҈Ëã Óºä‚ ºˆ¯ÒȈËã Óºä‚ ÒÓË}°‚ÒÓ˯ÒÒªˆººÁ‚Ó}Òº
                    ÓÈãÈ
          
          
  iº}ÈÏȈËã°ˆmº
     
          vãË‚ˈÒψ˺¯Ëä©ÒºËmÒÓºº¯ÈmËÓ°ˆmÈÒ°ãȹºãºÎ҈Ëã Ó©² ºˆ¯Ò
          ȈËã Ó©²  ªãËäËӈºm äȈ¯Ò© }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ m ÒȺÓÈã Óºä
          ¹¯Ë°ˆÈmãËÓÒÒ¯ÈÏä˯Ӻ°ˆÒ¹º¹¯º°ˆ¯ÈÓ°ˆmÈΩ Ω 
          
          
          
          { ˆÈ­ãÒË  ¹¯ÒmËËÓ© ²È¯È}ˆË¯Ò°ˆÒ}Ò º°ÓºmÓ©² ˆÒ¹ºm }mȯȈÒÓ©²
Á‚Ó}ÒºÓÈãºm
          
          
                                                          
                                                                                                             
                                      ºãºÎÒ |ˆ¯ÒÈ
         ‘Ò¹                                                                                               
                                       ˆËã Ó©® ˆËã Ó©®
 }mȯȈÒÓºº           cÈÓ                                                   ¯Òä˯}ÈÓºÓÒ˰}ººmÒÈ
                                        ÒÓË}°         ÒÓË}°
  Á‚Ó}ÒºÓÈãÈ
                                       ÒÓ˯ÒÒ ÒÓ˯ÒÒ
            
Ívsv qznstv                                                                                                 n
vwénlnsntt€p              = n            = n            =0                                      ( x ) =       ξ i2 ∑
                                                                                                                          i =1
Ívsv qznstv                                                                                                    k
wvsy                            < n              < n              = 0                        ( x ) = ∑ ξ i2 ; k < n 
vwénlnsntt€p                                                                                                  i =1

                                                                                                                   k
Ìzéq|jznstv
                                 = n              =0              = n                              ( x ) = ∑ (−1)ξ i2 
vwénlnsntt€p
                                                                                                                     i =1
Ìzéq|jznstv                                                                                              k
wvsy                            < n              = 0              < n                      ( x ) = ∑ (−1_ ξ i2 ; k < n 
vwénlnsntt€p                                                                                             i =1
                                                                                              k             k+p
Íévqokvst€p                    ≤ n              ≤ n               ≤ n            ( x ) = ∑ξ i2 +           ∑ (−1)ξ i2 ; k + p ≤ n 
                                                                                                i =1           i = k +1
          
          
          
                                     Òjisq|j
      
      
      
      
      { ¯«Ë ¹¯Ò}ãÈÓ©² ÏÈÈ º}ÈÏ©mÈˈ°« Ó˺­²ºÒä©ä ¹¯ºmËËÓÒË Ò°°ã˺mÈÓÒ«
ÏÓÈ}ºmº® º¹¯ËËãËÓÓº°ˆÒ }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ ­ËÏ ¹¯ÒmËËÓÒ« ˺ }
ÒȺÓÈã Óºä‚ mÒ‚ º­ÓºË Ó˺­²ºÒäºË Ò º°ˆÈˆºÓºË ‚°ãºmÒË ¹ºãºÎ҈Ëã Óº®
º¹¯ËËãËÓÓº°ˆÒ}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈÈˈ