Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 223 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
p°ãÒ m
n
Λ
ÏÈÈÓ ÈÏÒ°
},...,,{
21
n
ggg
 ºÈ }mȯÈÒÓ©® ÁÓ}ÒºÓÈã äºÎË
©¹¯Ë°ÈmãËÓmmÒË
g
g
g
nnnnn
n
n
nik
n
k
n
i
ki
x
xx
T
2
1
21
22221
11211
21
11
...
...
............
...
...
...)(
===
∑∑
==
ξ
ξ
ξ
ϕϕϕ
ϕϕϕ
ϕϕϕ
ξ
ξ
ξ
ξ
ξ
ϕ

Ë
x
g
}ºº¯ÒÓÈÓ©®°ºãËªãËäËÓÈ
=
=
n
i
ii
gx
1
ξ
mÈÓÓºäÈÏÒ°Ë~ÈäËÓÈÈÏÒ
°È˰˰mËÓÓº¹¯ÒmºÒ}ÒÏäËÓËÓÒäÈ¯Ò©}mȯÈÒÓººÁÓ}ÒºÓÈãÈ¹ºÁº¯
äãË
ΦΦ
=
gg
SS
T
º¹¯ËËã«Ë亮˺¯Ë亮
|äËÒäºÒÓºÈËã˰ºº¯ÈÏÓº°¯ºÒ}mȯÈÒÓ©®ÁÓ}ÒºÓÈã
)(
x
¹º
¹º¯ºÎÈËä ÒãÒÓˮӺä ÁÓ}ÒºÓÈã ¹¯º°ÒääË¯Ò¯ºmÈm ¹¯ËmȯÒËãÓº ¹º
°ãËÓÒ®iË®°mÒËãÓºã«ãºº
),(
yxB
äºÎÓº}ÈÏÈ°ÒääË¯ÒÓ©®ÒãÒÓˮө®
ÁÓ}ÒºÓÈãmÒÈ
1
2
((,) (,))
Bxy Byx+
}ºº¯©®Ë¹º¯ºÎÈzvz nxjup}mȯÈ
ÒÓ©® ÁÓ}ÒºÓÈã
)(x
 º Ò
),( yxB
 { ªºä °ãÈË
],1[,,
2
nji
jiij
ij
=
+
=
ββ
ϕ
 Ë
ϕ
ij
ij n
,[,]
=
1
ªãËäËÓ©äÈ¯Ò©}mȯÈÒÓººÁÓ}ÒºÓÈãÈ
)(
x

¯Òä˯

°m
3
Λ
ÏÈÈÓÒãÒÓˮө®ÁÓ}ÒºÓÈã
=++=
233213211222111
233),(
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
yxB

3
2
1
321
012
131
031
η
η
η
ξ
ξ
ξ
=

ÒäËÒ®äÈ¯Ò
012
131
031
Ò m°Òã ˺¯Ëä© ÓË «mã«
Ò®°« °ÒääË¯Ò˰}Òä º¯ºÎÈËä©® Òä m
Λ
3
}mȯÈÒÓ©® ÁÓ}
ÒºÓÈãËÒäËmÒ
323121
2
2
2
11
2243)(
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
++=x

cÈÏËã 
sËãÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



       p°ãÒ m Λn  ÏÈÈÓ ­ÈÏÒ° {g1 , g 2 ,..., g n }  ˆºÈ }mȯȈÒÓ©® Á‚Ó}ÒºÓÈã äºÎˈ
­©ˆ ¹¯Ë°ˆÈmãËÓmmÒË
       
                                                                             ϕ11 ϕ12                 ... ϕ1n ξ1
                        n       n                                            ϕ 21 ϕ 22               ... ϕ 2 n ξ 2
          ( x ) = ∑∑ ϕ kiξ k ξ i = ξ1 ξ 2
                                                                                                                               T
                                                               ... ξ n                                                   = x   g
                                                                                                                                          x   g
                                                                                                                                                   
                                                                              ...  ...               ... ...      ...                  g
                       k =1i =1
                                                                             ϕ n1 ϕ n2               ... ϕ nn     ξn

                                                                                         n
Ë x
             g
                 }ºº¯ÒÓȈө®°ˆºã­ËªãËäËӈÈ x =                                  ∑ ξ i g i mÈÓÓºä­ÈÏÒ°Ë~ÈäËÓÈ­ÈÏÒ
                                                                                        i =1
°È˰ˆË°ˆmËÓÓº¹¯Òmº҈}ÒÏäËÓËÓÒ äȈ¯Ò©}mȯȈÒÓººÁ‚Ó}ÒºÓÈãȹºÁº¯
                                    T
ä‚ãË Φ                = S              Φ       S º¹¯ËËã«Ë亮ˆËº¯Ë亮
                  g′                        g
       
       
       
       |ˆäˈÒ䈺ÒÓºÈËã˰ºº­¯ÈÏÓº°ˆ¯ºÒˆ }mȯȈÒÓ©®Á‚Ó}ÒºÓÈã  (x ) ¹º
¹º¯ºÎÈ Ëä‚ ­ÒãÒÓˮӺä‚ Á‚Ó}ÒºÓÈã‚ ¹¯º°Òääˈ¯Ò¯ºmÈm ¹¯Ëmȯ҈Ëã Óº ¹º
°ãËÓÒ®iË®°ˆm҈Ëã Óºã«ã ­ºº B ( x , y ) äºÎÓº‚}ÈÏȈ °Òääˈ¯ÒÓ©®­ÒãÒÓˮө®
                        1
Á‚Ó}ÒºÓÈãmÒÈ          ( B ( x , y ) + B ( y , x )) }ºˆº¯©®­‚ˈ¹º¯ºÎȈ zvz nxju€p}mȯÈ
                        2
                                                                                  β ij + β ji
ˆÒÓ©® Á‚Ó}ÒºÓÈã  (x )  ˆº Ò B ( x , y )  { ªˆºä °ã‚ÈË ϕ ij =                   , i , j = [1, n]  Ë
                                                                                       2
ϕij i , j = [1, n] ªãËäËӈ©äȈ¯Ò©}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈ  (x ) 
             
             
 ¯Òä˯
 
                            ‚°ˆ m Λ3 ÏÈÈÓ­ÒãÒÓˮө®Á‚Ó}ÒºÓÈã
                            
                                            B1 ( x, y ) = ξ1η1 + 3ξ 2η 2 − ξ 2η1 − 3ξ1η 2 + 2ξ 3η1 − ξ 2η3 − ξ 3η 2 = 
                                                                                             
                                                                                  1          −3          0      η1
                             = ξ1 ξ 2              ξ3     −1              3      −1      η 2 
                                                                                    2          −1        0      η3
                            
                                                                 1     −3          0
                            ÒäË Ò® äȈ¯Ò‚ − 1                        3       − 1  Ò m °Òã‚ ˆËº¯Ëä©  ÓË «mã« 
                                                                 2      −1         0
                            Ò®°« °Òääˈ¯Ò˰}Òä º¯ºÎÈËä©® Òä m Λ  }mȯȈÒÓ©® Á‚Ó}
                                                                                                                   3

                            ÒºÓÈã­‚ˈÒäˈ mÒ
                            
                                                          1 ( x ) = ξ12 + 3ξ 22 − 4ξ1ξ 2 + 2ξ1ξ 3 − 2ξ 2ξ 3