Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 221 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
iº}ÈÏÈËã°mº
ºº¹¯ËËãËÓÒ äÈ¯Ò© ¹Ë¯Ë²ºÈººÓººÈÏÒ°È}¯ºäm
n
Λ
°ä¹
ÒäËä˰º°ººÓºËÓÒ«
],1[,
1
nkgg
n
i
iikk
==
=
σ
ÓººÈ
,
),(),(),(
11
T
11
1111
∑∑∑∑
∑∑∑∑
====
====
==
===
=
n
i
n
j
jlijkiijjl
n
i
n
j
ik
jijl
n
i
n
j
ik
n
i
n
j
jjliiklkkl
ggBggBggB
σβσβσσ
σσσσβ
ã«m°Ë²
kl n
,[,]
=
1

˺¯ËäÈº}ÈÏÈÓÈ
vã˰mÒË

det det (det )BBS
gg
=
2

iº}ÈÏÈËã°mº
vãËËÒÏ˺¯Ëä©ÈÈ}ÎË°mº®°mË˯äÒÓÈÓÈ˺¯Ëä©Ò
|äËÒä º m °Òã ÓËm©¯ºÎËÓÓº°Ò äÈ¯Ò© ¹Ë¯Ë²ºÈ ÏÓÈ} º¹¯ËËãÒËã«
äÈ¯Ò©ÒãÒÓˮӺºÁÓ}ÒºÓÈãÈÓËÏÈmÒ°Òºm©º¯ÈÈÏÒ°È
vã˰mÒË

cÈÓäÈ¯Ò©ÒãÒÓˮӺºÁÓ}ÒºÓÈãÈÓËÏÈmÒ°Òºm©º¯ÈÈÏÒ
°È
iº}ÈÏÈËã°mº
vãËËÒÏ˺¯Ëä©ÒÓËm©¯ºÎËÓÓº°ÒäÈ¯Ò©¹Ë¯Ë²ºÈ
S

|¹¯ËËãËÓÒË

rÒãÒÓˮө® ÁÓ}ÒºÓÈã
),( yxB
ÓÈÏ©mÈË°« xquunzéq·tu ˰ãÒ ã«
ãº®¹º¯«ºËÓÓº®¹È¯©ªãËäËÓºm
x
Ò
y
ãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
Λ
ÒäËËä˰º¯ÈmËÓ°mº
),(),( xyByxB
=

˺¯ËäÈ

iã« °ÒääË¯ÒÓº°Ò ÒãÒÓˮӺº ÁÓ}ÒºÓÈãÈ m
n
Λ
Ó˺²º Òäº Ò
º°ÈºÓºº©˺äÈ¯ÒÈ©ãÈ°ÒääË¯Ò˰}º®
cÈÏËã 
sËãÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



  iº}ÈÏȈËã°ˆmº
   
         º º¹¯ËËãËÓÒ  äȈ¯Ò© ¹Ë¯Ë²ºÈ ºˆ ºÓºº ­ÈÏÒ°È } ¯‚ºä‚ m Λn  °ä ¹ 
                                                                      n
         ÒäË ˆä˰ˆº°ººˆÓº ËÓÒ« g k′ =                             ∑ σ ik g i ,k = [1, n] ÓºˆºÈ
                                                                     i =1
                                                               n                     n           n    n
                             β kl′ = B( g k′ , g l′ ) = B(∑ σ ik g i , ∑ σ jl g j ) = ∑ ∑ σ ik σ jl B( g i , g j ) =
                                                              i =1                   j =1       i =1 j =1
                                                                                                                                       
                                  n    n                        n              n
                              = ∑ ∑ σ ik σ jl β ij = ∑                σ kiT   ∑ β ij σ jl ,
                                 i =1 j =1                     i =1           j =1
         
         ã«m°Ë² k , l = [1, n] 
     
     

     ‘˺¯ËäȺ}ÈÏÈÓÈ
             
             
             
 vã˰ˆmÒË
 
                          det B        g′
                                             = det B      g
                                                              (det S ) 2 
          
 iº}ÈÏȈËã°ˆmº
   
        vãË‚ˈÒψ˺¯Ëä©ÈˆÈ}Î˰mº®°ˆmˈ˯äÒÓÈӈÈ ˆËº¯Ëä©Ò 
        
        
        
        |ˆäˈÒä ˆº m °Òã‚ ÓËm©¯ºÎËÓÓº°ˆÒ äȈ¯Ò© ¹Ë¯Ë²ºÈ ÏÓÈ} º¹¯ËËã҈Ëã«
äȈ¯Ò©­ÒãÒÓˮӺºÁ‚Ó}ÒºÓÈãÈÓËÏÈmҰ҈ºˆm©­º¯È­ÈÏÒ°È
        
        
vã˰ˆmÒË      cÈÓäȈ¯Ò©­ÒãÒÓˮӺºÁ‚Ó}ÒºÓÈãÈÓËÏÈmҰ҈ºˆm©­º¯È­ÈÏÒ
         °È
          
 iº}ÈÏȈËã°ˆmº
   
         vãË‚ˈÒψ˺¯Ëä©ÒÓËm©¯ºÎËÓÓº°ˆÒäȈ¯Ò©¹Ë¯Ë²ºÈ S 
         
         
         
 |¹¯ËËãËÓÒË    rÒãÒÓˮө® Á‚Ó}ÒºÓÈã B ( x , y )  ÓÈÏ©mÈˈ°« xquunzéq·t€u ˰ãÒ ã«
 
                 ã ­º®‚¹º¯«ºËÓÓº®¹È¯©ªãËäËӈºm xÒ yãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ Λ 
                 ÒäËˈä˰ˆº¯ÈmËÓ°ˆmº B ( x, y ) = B ( y, x ) 
           
           
 ‘˺¯ËäÈ                 iã« °Òääˈ¯ÒÓº°ˆÒ ­ÒãÒÓˮӺº Á‚Ó}ÒºÓÈãÈ m Λn  Ó˺­²ºÒäº Ò
 
                          º°ˆÈˆºÓºˆº­©ËºäȈ¯ÒÈ­©ãȰÒääˈ¯Ò˰}º®