Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 219 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
cÈÏËã
spjspqshp~k{jvjl|vj
{jspqs|lc|vcksv{p
rÒãÒÓˮөËÁÓ}ÒºÓÈã©
|¹¯ËËãËÓÒË

° m ãÒÓˮӺä ¹¯º°¯ÈÓ°mË
Λ
}Èκ® ¹º¯«ºËÓÓº® ¹È¯Ë ªãË
äËÓºm
x
Ò
y
¹º°ÈmãËÓºm°ººmË°mÒËÒ°ãº
),( yxB
È}º
°
βαβαβα
,;,,;),(),(),(
212121
Λ+=+ yxxyxByxByxxB
°

βαβαβα
,;,,;),(),(),(
212121
Λ+=+
yyxyxByxByyxB
ºÈ ºmº¯« º m
Λ
ÏÈÈÓ iqsqtnptp {ytr|qvtjs ÒãÒ iqsqtnptj¹
{véuj
¯Òä˯

°¯ºÒÏmËËÓÒËm²ãÒÓˮө²ÁÓ}ÒºÓÈãºm
)(
xF
Ò
)(
yG
º¹¯ËË
ãËÓÓ©²m
Λ

)()(),( yGxFyxB
=
˰ÒãÒÓˮө®ÁÓ}ÒºÓÈã
°imº®Óº®ÒÓ˯Èã
∫∫∫∫
==
β
α
β
α
τσσστττσστστ
ddyKxddyxKyxB
)(
)(),()()()(),(),(

Ë ÁÓ}Ò« m² ¹Ë¯ËäËÓÓ©²
K
(
τ
,
σ
)
Ó˹¯Ë¯©mÓÈ ÓÈ äÓºÎ˰mË
:
ατβ
ασβ
≤≤
≤≤
 ˰ ÒãÒÓˮө® ÁÓ}ÒºÓÈã m ãÒÓˮӺä
¹¯º°¯ÈÓ°mËÓ˹¯Ë¯©mÓ©²ÓÈ
[,]
αβ
ÁÓ}Ò®
°rÒãÒÓˮөäÁÓ}ÒºÓÈãºä«mã«Ë°«°}È㫯ӺË¹¯ºÒÏmËËÓÒËmË}
º¯ºmÓÈ¹ãº°}º°ÒÒãÒm¹¯º°¯ÈÓ°mË
cÈÏËã 
sËãÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



               
               
               
               
               
               
               
cÈÏËã
spjspqshp~k{jvjl|v‘j
{jspqs|lc|v‘cksv‘{p
               
               
               
               
rÒãÒÓˮөËÁ‚Ó}ÒºÓÈã©
               
               
               
    |¹¯ËËãËÓÒË           ‚°ˆ  m ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË Λ }Èκ® ‚¹º¯«ºËÓÓº® ¹È¯Ë ªãË
    
                           äËӈºmxÒy¹º°ˆÈmãËÓºm°ººˆmˈ°ˆmÒËҰ㺠B ( x , y ) ˆÈ}ˆº
                           
                              ° B(α x1 + β x 2 , y ) = α B( x1 , y ) + β B( x 2 , y ) ; ∀x1 , x 2 , y ∈ Λ ; ∀α , β 
                              
                              ° B( x ,α y1 + β y 2 ) = α B( x , y1 ) + β B( x, y 2 ) ; ∀x, y1 , y 2 ∈ Λ ; ∀α , β 
                              
                           ˆºÈ ºmº¯«ˆ ˆº m Λ  ÏÈÈÓ iqsqtnpt€p {ytr|qvtjs ÒãÒ iqsqtnptj¹
                           {véuj 
           
           
           
 ¯Òä˯                   °¯ºÒÏmËËÓÒËm‚²ãÒÓˮө²Á‚Ó}ÒºÓÈãºm F (x ) Ò G ( y ) º¹¯ËË
                         ãËÓÓ©²m Λ  B( x, y ) = F ( x )G ( y ) ˰ˆ ­ÒãÒÓˮө®Á‚Ó}ÒºÓÈã
                                     
                                     
                           °imº®Óº®Òӈ˯Èã
                                                                                                  β          β
                                         B ( x, y ) = ∫∫ K (τ ,σ ) x (τ ) y (σ )dσdτ = ∫ x (τ )            ( ∫ K (τ ,σ ) y(σ )dσ )dτ 
                                                        Ω                                         α          α
                                  Ë Á‚Ó}Ò« m‚² ¹Ë¯ËäËÓÓ©² K(τ,σ) Ó˹¯Ë¯©mÓÈ ÓÈ äÓºÎ˰ˆmË
                                      α ≤ τ ≤ β 
                                   Ω:             ˰ˆ  ­ÒãÒÓˮө® Á‚Ó}ÒºÓÈã m ãÒÓˮӺä
                                      α ≤ σ ≤ β 
                                  ¹¯º°ˆ¯ÈÓ°ˆmËÓ˹¯Ë¯©mÓ©²ÓÈ [α , β ] Á‚Ó}Ò®
                                      
                                      
                          °rÒãÒÓˮөäÁ‚Ó}ÒºÓÈãºä«mã«Ëˆ°«°}È㫯Ӻ˹¯ºÒÏmËËÓÒËmË}
                                ˆº¯ºmÓȹ㺰}º°ˆÒÒãÒm¹¯º°ˆ¯ÈÓ°ˆmË