Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 236 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
º°ÒÈËä ÏÓÈËÓÒ« Ò°Ëã
rg
Φ

rg
Ψ

sgn
Φ
Ò
sgn
Ψ
ã« Ëm«Ò ºm
ãÒÓÒ®mº¯ºº¹º¯«}ÈÓÈ¹ãº°}º°Ò¹¯ÒmËËÓÓ©²mÁº¯äãÒ¯ºm}Ë˺¯Ëä©¯Ë
ÏãÈ©¹ºä˰ÒämÈãÒ
ãÒÓÒÒ
zÈÓºÓÒ˰}ºË¯Èm
ÓËÓÒË
rg
Ψ
sgn
Ψ
rg
Φ
sgn
Φ

wããÒ¹°
+
=
x
a
y
b
2
2
2
2
1





lÓÒä©®ªããÒ¹°
+
=−
x
a
y
b
2
2
2
2
1





º}È
+
=
x
a
y
b
2
2
2
2
0





ҹ˯ºãÈ
=
x
a
y
b
2
2
2
2
1





˯˰Ë}ÈÒ˰«
¹¯«ä©Ë
0
2
2
2
2
=
b
y
a
x





ȯÈºãÈ
=
ypx
2
2





ȯÈããËãÓ©Ë
¹¯«ä©Ë
=ya
22





ȯÈäÓÒ䩲
¹¯«ä©²
=−ya
22





vºm¹ÈÈÒË
¹¯«ä©Ë
=y
2
0




Òjisq|j
jÏ ÈãÒ© °ãËË º}ÈΩ® ãÒÓÒÒmº¯ºº ¹º¯«}ÈÓÈ ¹ãº°}º°Ò
ÒäËË °mº® ÓÒ}ÈãÓ©® ÓÈº¯ ÏÓÈËÓÒ® ÒÓmȯÒÈÓºm }ºº¯©®äºÎË ©¹¯ÒÓ« ÏÈ
¹¯ÒÏÓÈ}¹¯ÒÓÈãËÎÓº°ÒÓË}ºº¯º®ãÒÓÒÒmº¯ºº¹º¯«}È}}ºÓ}¯ËÓºämÒ
{ÏÈ}ãËÓÒËºäËÒäº
°
º°ËÏÓÈËÓÒ®¯ÈÓºmÒäºãË®°ÒÓÈ¯m©¹ºãÓ«Ë°«¹Ëä¹¯ÒmËËÓÒ«
}mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ } ÒȺÓÈãÓºä  |ÓÈ}º ã« ¹È¯Èºã©
¹¯ÒmËËÓÒËÁÓ}ÒºÓÈãÈ
Ψ
(,,)
xyz
}ÒȺÓÈãÓºämÒäÈ¯ÒË®¹Ë¯Ë²ºÈ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



       º°҈ÈËä ÏÓÈËÓÒ« Ò°Ëã rg Φ  rg Ψ  sgn Φ  Ò sgnΨ  ã« Ëm«ˆÒ mÒºm
ãÒÓÒ®mˆº¯ºº¹º¯«}ÈÓȹ㺰}º°ˆÒ¹¯ÒmËËÓÓ©²mÁº¯ä‚ãÒ¯ºm}ˈ˺¯Ë䩯Ë
ς㠈Ȉ©¹ºä˰ˆÒämˆÈ­ãÒ‚
       
       
                                    
                                                                                 
                         zÈÓºÓÒ˰}ºË‚¯Èm
         {ÒãÒÓÒÒ
                                   ÓËÓÒË           rgΨ      sgnΨ  rg Φ       sgn Φ
                                                                                   
                             x′2 y′2                                           
   wããÒ¹°                     2  +   2 = 1                               
                                                   a           b
                                                x′2         y′2                                                                     
       lÓÒä©®ªããÒ¹°                                  +          = −1                                                         
                                                 a2          b2
                                                 x′2 y′2                                                                            
       ‘º}È                                       + 2 = 0                                                                    
                                                  a2  b
                                                 x′2 y′2                                                                            
       €Ò¹Ë¯­ºãÈ                                   − 2 = 1                                                                    
                                                  a2  b
        

                                                   x′2        y′2                                                                     
         Ë¯Ë°Ë}È Ò˰«
   
         ¹¯«ä©Ë                                          −         = 0                                                          
                                                   a2        b2
                                                            
                                                                                                                                     
       È¯È­ºãÈ                                   y ′ = 2 px ′ 
                                                         2
                                                                                                                                  
    
                                                            
                                                                                                                                     
         È¯ÈããËã Ó©Ë                                   y′2 = a2 
                                                                                                                                
         ¹¯«ä©Ë
    
                                                            
                                                                                                                                     
         È¯ÈäÓÒ䩲                                 y ′ = −a 2 
                                                          2
                                                                                                                                
         ¹¯«ä©²
    
                                                            
                                                                                                                                     
         vºm¹ÈÈ ÒË                                    y′2 = 0 
                                                                                                                                
         ¹¯«ä©Ë
    
             
             
                                                                  Òjisq|j
                                                                        
      
      jÏ ˆÈ­ãÒ©  °ãË‚ˈ ˆº }ÈΩ® mÒ ãÒÓÒÒ mˆº¯ºº ¹º¯«}È ÓÈ ¹ãº°}º°ˆÒ
ÒäËˈ °mº® ‚ÓÒ}Èã Ó©® ÓÈ­º¯ ÏÓÈËÓÒ® ÒÓmȯÒÈӈºm }ºˆº¯©® äºÎˈ ­©ˆ  ¹¯ÒÓ«ˆ ÏÈ
¹¯ÒÏÓÈ}¹¯ÒÓÈãËÎÓº°ˆÒÓË}ºˆº¯º®ãÒÓÒÒmˆº¯ºº¹º¯«}È}}ºÓ}¯ËˆÓºä‚mÒ‚
      
      
      {ÏÈ}ã ËÓÒ˺ˆäˈÒ䈺
      
      °º°ˈÏÓÈËÓÒ®¯ÈÓºmÒ亂ãË®°ÒÓȈ‚¯m©¹ºãӫˈ°«¹‚ˆË乯ÒmËËÓÒ«
           }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ } ÒȺÓÈã Óºä‚ mÒ‚ |ÓÈ}º ã« ¹È¯È­ºã©
           ¹¯ÒmËËÓÒËÁ‚Ó}ÒºÓÈãÈ Ψ ( x , y , z ) }ÒȺÓÈã Óºä‚mÒ‚äȈ¯ÒË®¹Ë¯Ë²ºÈ