Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 238 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
iº}ÈÏÈËã°mº
p°ãÒ m ¯È°°äÈ¯ÒmÈËäºä ÈÏÒ°Ë
=
=
n
i
ii
x
1
2
)(
ξ
λ
 º m °Òã °ººÓºËÓÒ®
nn
λλλλ
121
...
  ÒäË ä˰º Ó˯ÈmËÓ°mÈ
==
n
i
in
n
i
ii
1
2
1
2
ξ
λ
ξ
λ
Ò
==
n
i
ii
n
i
i
1
2
1
2
1
ξ
λ
ξ
λ

sº ¹º°}ºã}
1
1
2
=
=
n
i
i
ξ
 º  °¹¯ÈmËãÒm© Ò Ó˯ÈmËÓ°mÈ
n
n
i
ii
λ
ξ
λ
=1
2
Ò
=
n
i
ii
1
2
1
ξ
λλ
 º ˰¹¯Ò
T
1,...,0,0
=
x
º°ÒÈË°« äÈ}°Òää È ¹¯Ò
x =
10 0, ,...,
T
äÒÓÒääÏÓÈËÓÒ®ÁÓ}ÒºÓÈãÈ
˺¯ËäÈº}ÈÏÈÓÈ
ºãÒãÒÓˮөËÁÓ}ÒºÓÈã©
º ÈÓÈãºÒÒ ° ÒãÒÓˮөäÒ ÁÓ}ÒºÓÈãÈäÒ ÏÈmÒ°«ÒäÒ º ¹È¯© ªãËäËÓºm
ãÒÓˮӺº ¹¯º°¯ÈÓ°mÈ äºÎÓº º¹¯ËËãÒ ÓËãÒÓˮөË ÁÓ}ÒºÓÈã© ºãÈÈÒË
ÈÓÈãºÒÓ©äÒ°mº®°mÈäÒÓºÏÈmÒ°«ÒËººã˺Ò°ãÈȯäËÓºm
|¹¯ËËãËÓÒË

°mãÒÓˮӺä¹¯º°¯ÈÓ°mË
Λ
}Èκ®¹º¯«ºËÓÓº®°ºmº}¹Óº
°Ò
k
ªãËäËÓºm
},...,,{
21
k
xxx
¹º°ÈmãËÓº m °ººmË°mÒË Ò°ãº
),...,,(
21
k
xxxQ
È}ºã«ãºº
j=[
,k]
,,;,
;),...,,...,(),...,,...,(),...,,...,(
111
βα
βαβα
Λ
+
=
+
xx
xxxQxxxQxxxxQ
kjkjkjj
ºÈºmº¯« ºm
Λ
ÏÈÈÓwvsqsqtnptp {ytr|qvtjs ÈÒäËÓÓº
k
sqtnptp{ytr|qvtjs
¯Òä˯

°
¯ºÒÏmËËÓÒË
k
ãÒÓˮө²ÁÓ}ÒºÓÈãºm
)(,),(),(
21
xFxFxF
k
,
º¹
¯ËËãËÓÓ©²m
Λ
º˰
)()()(),,,(
221121
kkk
xFxFxFxxxQ
=
˰
k
ãÒÓˮө®ÁÓ}ÒºÓÈã
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



  iº}ÈÏȈËã°ˆmº
                                                                                             n
           p°ãÒ m ¯È°°äȈ¯ÒmÈËäºä ­ÈÏÒ°Ë  ( x ) =                                      ∑ λiξ i′2      ˆº m °Òã‚ °ººˆÓº ËÓÒ®
                                                                                            i =1
                                                                                                                         n                    n
              λ1 ≤ λ2 ≤ ... ≤ λn −1 ≤ λn  ­‚‚ˆ Òäˈ  ä˰ˆº Ó˯ÈmËÓ°ˆmÈ                                           ∑ λiξ i′2 ≤ λn ∑ ξ i′2           Ò
                                                                                                                        i =1                 i =1
                 n               n
              λ1 ∑ ξ i′ 2 ≤ ∑ λiξ i′ 2 
                i =1            i =1
           
                                             n                                                                                      n
           sº ¹º°}ºã }‚                   ∑ ξ i′2 = 1  ˆº ­‚‚ˆ °¹¯ÈmËãÒm© Ò Ó˯ÈmËÓ°ˆmÈ                                 ∑ λiξ i′2 ≤ λn  Ò
                                            i =1                                                                                   i =1
                       n
              λ1 ≤ ∑ λiξ i′ 2  ‘º ˰ˆ  ¹¯Ò x = 0,0,...,1
                                                                                            T
                                                                                                 º°ˆÒÈˈ°« äÈ}°Òä‚ä È ¹¯Ò
                     i =1
                                       T
              x = 1,0,...,0                äÒÓÒä‚äÏÓÈËÓÒ®Á‚Ó}ÒºÓÈãÈ
    
    ‘˺¯ËäȺ}ÈÏÈÓÈ
          
          
          
          
ºãÒãÒÓˮөËÁ‚Ó}ÒºÓÈã©
         
         
         
         º ÈÓÈãºÒÒ ° ­ÒãÒÓˮөäÒ Á‚Ó}ÒºÓÈãÈäÒ ÏÈmÒ°«ÒäÒ ºˆ ¹È¯© ªãËäËӈºm
ãÒÓˮӺº ¹¯º°ˆ¯ÈÓ°ˆmÈ äºÎÓº º¹¯ËËã҈  ÓËãÒÓˮөË Á‚Ó}ÒºÓÈã© º­ãÈÈ ÒË
ÈÓÈãºÒÓ©äÒ°mº®°ˆmÈäÒÓºÏÈmÒ°«Ò˺ˆ­ºã ˺ҰãÈȯ‚äËӈºm
         
         
 |¹¯ËËãËÓÒË    ‚°ˆ mãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË Λ }Èκ®‚¹º¯«ºËÓÓº®°ºmº}‚¹Óº
          °ˆÒ k ªãËäËӈºm { x1, x 2 ,..., xk }  ¹º°ˆÈmãËÓº m °ººˆmˈ°ˆmÒË Ò°ãº
                            Q ( x1 , x 2 ,..., xk ) ˆÈ}ˆºã«ã ­ººj=[,k]
                            
                                       Q ( x1 ,...,α x ′j + β x ′′j ,..., xk ) = α Q ( x1 ,..., x ′j ,..., xk ) + β Q ( x1 ,..., x ′′j ,..., xk ) ;
                                                                                                                                                      
                                       ∀x ′, x ′′ ∈ Λ ; ∀α , β ,
                            
                            ˆºÈ ºmº¯«ˆ ˆº m Λ  ÏÈÈÓ wvsqsqtnpt€p {ytr|qvtjs È ÒäËÓÓº k
                            sqtnpt€p{ytr|qvtjs
          
          
 ¯Òä˯                    °¯ºÒÏmËËÓÒË kãÒÓˮө²Á‚Ó}ÒºÓÈãºm F1 ( x ), F2 ( x ),, Fk ( x ) ,º¹
 
                                     ¯ËËãËÓÓ©²m Λ ˆº˰ˆ  Q ( x1 , x 2 ,, x k ) = F1 ( x1 ) F2 ( x 2 ) Fk ( x k ) ˰ˆ 
                                     kãÒÓˮө®Á‚Ó}ÒºÓÈã