Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 240 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
cÈÏËã
p{zji|{|c|vcksv{|
|¹¯ËËãËÓÒËÒº°ÓºmÓ©Ë°mº®°mÈ
{ ¹¯ºÒÏmºãÓºä ãÒÓˮӺä ¹¯º°¯ÈÓ°mË º°°m ¹ºÓ«Ò« ÙãÒÓ©µ
ٯȰ°º«ÓÒ«µ  ÙmËãÒÒÓ© ãȵ Ò ¯Ò² äË¯Ò˰}Ò² ²È¯È}˯ҰÒ} |ÓÈ}º Ò²
Ò°¹ºãϺmÈÓÒË °ÈÓºmÒ°« mºÏäºÎÓ©ä ˰ãÒ m ãÒÓˮӺä ¹¯º°¯ÈÓ°mË º¹ºãÓÒËãÓº
mm˰Ò°¹ËÒÈãÓº¹¯ËËã«ËäÓÒÎËº¹Ë¯ÈÒ
|¹¯ËËãËÓÒË

° m mË˰mËÓÓºä ãÒÓˮӺä ¹¯º°¯ÈÓ°mË }Èκ® ¹º¯«ºËÓÓº®
¹È¯Ë ªãËäËÓºm
x
Ò
y
¹º°ÈmãËÓº m °ººmË°mÒË mË˰mËÓÓºË Ò°ãº
),( yx
ÓÈÏ©mÈËäºË xrjs¹étu wévqoknlntqnu È} º m©¹ºãÓËÓ© È}
°Òºä©
°
);,(),( xyyx
=
°
);,(),(
yxyx
λλ
=
°
);,(),(),(
2121
yxyxyxx
+=+
°
0),(
xx
¹¯ÒËä
oxxx
==
0),(

ºÈºmº¯«ºÏÈÈÓºnkrsqlvkvwévxzéjtxzkv
E

~ÈäËÈÓÒË
È}°Òºä©°°m°ºmº}¹Óº°ÒºÏÓÈÈº°}È㫯ӺË¹¯ºÒÏmËËÓÒË
˰iqsqtnptpº°ãËËÒÏ°°Ò°Òxquunzéq·tp°ãËËÒÏ
°ÁÓ}ÒºÓÈã}ºº¯©®}¯ºäËºº¹º¯ºÎÈËwvsvqznstvvwénln
snttp°ãËË ÒÏ ° }mȯÈÒÓ©® ÁÓ}ÒºÓÈã º® ÒãÒÓˮө®
ÁÓ}ÒºÓÈã ºãÈÈ Ò® ÈÓÓ©äÒ °mº®°mÈäÒ äºÎË © ¹¯ÒÓ« ÏÈ
°}È㫯ӺË¹¯ºÒÏmËËÓÒË
¯Òä˯

° ¯Ë²ä˯ӺË˺äË¯Ò˰}ºË¹¯º°¯ÈÓ°mº°º°}È㫯өä¹¯ºÒÏmË
ËÓÒËämmËËÓÓ©ä¹º¹¯ÈmÒãÈä¹«mã«Ë°«Ëm}ãÒºm©ä
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          
          
          
          
          
          
          
cÈÏËã
p{zji|{|c|v‘cksv‘{|
              
              
              
              
|¹¯ËËãËÓÒËÒº°Óºmө˰mº®°ˆmÈ
          
          
          
        { ¹¯ºÒÏmºã Óºä ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË ºˆ°‚ˆ°ˆm‚ ˆ ¹ºÓ«ˆÒ« ÙãÒÓ©µ
ٯȰ°ˆº«ÓÒ«µ ÙmËãÒÒÓ© ‚ãȵ Ò ¯‚Ò² äˈ¯Ò˰}Ò² ²È¯È}ˆË¯Ò°ˆÒ} |ÓÈ}º Ò²
Ò°¹ºã ϺmÈÓÒË °ˆÈÓºm҈°« mºÏäºÎÓ©ä ˰ãÒ m ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË º¹ºãÓ҈Ëã Óº
mm˰ˆÒ°¹ËÒÈã ӂ º¹¯ËËã«Ëä‚ ÓÒÎ˺¹Ë¯ÈÒ 
        
        
        
 |¹¯ËËãËÓÒË  ‚°ˆ  m m˝˰ˆmËÓÓºä ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË }Èκ® ‚¹º¯«ºËÓÓº®
 
               ¹È¯Ë ªãËäËӈºm x Ò y ¹º°ˆÈmãËÓº m °ººˆmˈ°ˆmÒË m˝˰ˆmËÓÓºË Ò°ãº
               ( x, y )  ÓÈÏ©mÈËäºË xrjs¹ét€u wévqoknlntqnu ˆÈ} ˆº m©¹ºãÓËÓ© È}
               °Òºä©
                                  ° ( x, y ) = ( y, x ); 
                                  ° (λx, y ) = λ ( x, y ); 
                                                 °     ( x1 + x 2 , y ) = ( x1 , y ) + ( x 2 , y ); 
                                                 °     ( x, x ) ≥ 0 ¹¯ÒËä ( x, x ) = 0 ⇔                     x = o 

                         ˆºÈºmº¯«ˆˆºÏÈÈÓºnkrsqlvkvwévxzéjtxzkvE 
          
          
~ÈäËÈÓÒË             È}°Òºä©°°m°ºmº}‚¹Óº°ˆÒºÏÓÈÈ ˆˆº°}È㫯Ӻ˹¯ºÒÏmËËÓÒË
                         ˰ˆ iqsqtnpt€p ˆº°ãË‚ˈÒϰ°Ò° Òxquunzéq·t€p °ãË‚ˈÒÏ
                         ° Á‚Ó}ÒºÓÈã}ºˆº¯©®}¯ºäˈºº¹º¯ºÎÈˈwvsv qznstvvwénln
                         sntt€p °ãË‚ˈ ÒÏ °  }mȯȈÒÓ©® Á‚Ó}ÒºÓÈã  ­º® ­ÒãÒÓˮө®
                         Á‚Ó}ÒºÓÈã º­ãÈÈ Ò® ÈÓÓ©äÒ °mº®°ˆmÈäÒ äºÎˈ ­©ˆ  ¹¯ÒÓ«ˆ ÏÈ
                         °}È㫯Ӻ˹¯ºÒÏmËËÓÒË
          
          
          
 ¯Òä˯                 ° ‘¯Ë²ä˯ӺË˺äˈ¯Ò˰}ºË¹¯º°ˆ¯ÈÓ°ˆmº°º°}È㫯ө乯ºÒÏmË
                       ËÓÒËämmËËÓө乺¹¯ÈmÒãÈ乫mã«Ëˆ°«Ëm}ãÒºm©ä