Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 241 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã
 

pm}ãÒºmº¹¯º°¯ÈÓ°mº
°¯º°¯ÈÓ°mº
n
ä˯ө² °ºãºm
nn
yx
η
η
η
ξ
ξ
ξ
...
;
...
2
1
2
1
==
°º °}È㫯
Ó©ä ¹¯ºÒÏmËËÓÒËä º¹¯ËËã«Ëä©ä ¹º Áº¯äãË
=
=
n
i
ii
yx
1
),(
η
ξ

˰Ëm}ãÒºmº¹¯º°¯ÈÓ°mº
°pm}ãÒºm©äË¹¯º°¯ÈÓ°mºÓ˹¯Ë¯©mÓ©²ÓÈ
[,]
αβ
ÁÓ}Ò®
°
°}È㫯өä¹¯ºÒÏmËËÓÒËä
(,) ()()
xy x y d
=
τττ
α
β
ÈÈ

ËÓÒË
Îvtv sq k
3
Λ
xrjs¹étvn wévqoknlntqn vwénlnsqz rjr wévqoknlntqn
lsqtknrzvévktjryirvxqtyxjymsjunlytquq"
sËÓËãÏ«È}}È}ÓËËm©¹ºãÓ«°«¹Ó} °º¹¯ËËãËÓÒ« 0
|¹¯ËËãËÓÒË

{Ëm}ãÒºmºä¹¯º°¯ÈÓ°mË
E
ÓÈϺmËä
° ËvéuvpÒãÒlsqtvpªãËäËÓÈ
x
Ò°ãº
xxx
=
(,)

°
 èjxxzv¹tqnuäËÎªãËäËÓÈäÒ
x
Ò
y
Ò°ãº
xy

~ÈäËÈÓÒË
 Ò°¹ºãϺmÈÓÒË ã« ººÏÓÈËÓÒ« Óº¯ä© ªãËäËÓÈ º¯ÈÓÒÒËãË® È
...
 ÓË¹¯ÒmºÒ}}È}ÒäãÒº}ºÓÁãÒ}Èä°mmËËÓÓ©äÒ¯ÈÓËËºº
ÏÓÈËÓÒ«äÒ¹ º°}ºã}ã«ãÒÓˮӺº¹¯º°¯ÈÓ°mÈmË˰mËÓÓ©²Ò°Ëã
Óº¯äÈÒ°ãÈºËmÒÓº °ºm¹ÈÈË°˺È°ºãÓº®mËãÒÒÓº®ã«}ºä
¹ãË}°ÓººÒ°ãÈÓº¯äÈ°ºm¹ÈÈË°˺äºãËäÈã«ãÒÓˮӺº¹¯º
°¯ÈÓ°mÈ˺äË¯Ò˰}Ò²mË}º¯ºm°ãÒÓº®mË}º¯È
˺¯ËäÈ

s˯ÈmËÓ°mº
Ò
rÓ«}ºm°}ºº
iã«ã©²
Eyx
,
ÒäËËä˰ºÓ˯ÈmËÓ°mº
(,)xy x y

iº}ÈÏÈËã°mº
iã«
∀∈[\ (
,
ÒmË˰mËÓÓººÒ°ãÈ
τ
ªãËäËÓ
xyE
−∈
τ
vºãȰӺ¹°ÒÏ0
cÈÏËã
pm}ãÒºmº¹¯º°ˆ¯ÈÓ°ˆmº



                                                                        ξ1                                               η1
                                                                        ξ2                                               η2
                             °¯º°ˆ¯ÈÓ°ˆmº nä˯ө² °ˆºã­ºm x =     ; y=                                              °º °}È㫯
                                                                        ...                                              ...
                                                                        ξn                                               ηn
                                                                                                                                          n
                                   Ó©ä ¹¯ºÒÏmËËÓÒËä º¹¯ËËã«Ëä©ä ¹º Áº¯ä‚ãË ( x, y ) =                                            ∑ξ iηi 
                                                                                                                                         i =1
                                   ˰ˆ Ëm}ãÒºmº¹¯º°ˆ¯ÈÓ°ˆmº
                             
                             
                             °pm}ãÒºm©ä ­‚ˈ ¹¯º°ˆ¯ÈÓ°ˆmº Ó˹¯Ë¯©mÓ©² ÓÈ [α , β ]  Á‚Ó}Ò® °
                                                                                               β
                                   °}È㫯ө乯ºÒÏmËËÓÒËä ( x , y ) =                        ∫ x(τ ) y(τ )dτ 
                                                                                              α
           
           
           
 ~ÈÈÈ                 Îv tv sq k Λ3  xrjs¹étvn wévqoknlntqn vwénlnsqz rjr wévqoknlntqn
 
                         lsqtknrzvévktjryirvxqtyxjymsjun lytquq"
                        
 cËËÓÒË
                         sˈÓËã Ï«ˆÈ}}È}ÓË­‚ˈm©¹ºãÓ«ˆ °«¹‚Ó}ˆ°º¹¯ËËãËÓÒ«0
           
           
           
    |¹¯ËËãËÓÒË          {Ëm}ãÒºmºä¹¯º°ˆ¯ÈÓ°ˆmËEÓÈϺmËä
    
                                        °        Ëvéuvp ÒãÒlsqtvp ªãËäËӈÈxҰ㺠x = ( x , x ) 
                                        °        èjxxzv¹tqnuäË΂ªãËäËӈÈäÒxÒyҰ㺠x − y 
           
           
           
~ÈäËÈÓÒË              Ò°¹ºã ϺmÈÓÒË ã« º­ºÏÓÈËÓÒ« Óº¯ä© ªãËäËӈÈ º¯ÈÓÒ҈ËãË® mÒÈ
                             ... Ó˹¯Òmº҈}}È}ÒäãÒ­º}ºÓÁãÒ}ˆÈä°mmËËÓÓ©äÒ¯ÈÓË˺­º
                          ÏÓÈËÓÒ«äÒ¹º°}ºã }‚ã«ãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈm˝˰ˆmËÓÓ©²Ò°Ëã
                          Óº¯äÈÒ°ãȺËmÒÓº°ºm¹ÈÈˈ°ËºÈ­°ºã ˆÓº®mËãÒÒÓº®ã«}ºä
                          ¹ãË}°ÓººÒ°ãÈÓº¯äȰºm¹ÈÈˈ°Ëºäº‚ãËäÈã«ãÒÓˮӺº¹¯º
                          °ˆ¯ÈÓ°ˆmÈ˺äˈ¯Ò˰}Ò²mË}ˆº¯ºm°ãÒÓº®mË}ˆº¯È
           
           
 ‘˺¯ËäÈ                iã«ã ­©² x, y ∈ E ÒäËˈä˰ˆºÓ˯ÈmËÓ°ˆmº ( x , y ) ≤ x                                           y 
 
  s˯ÈmËÓ°ˆmº
 zºÒ
 r‚Ó«}ºm°}ºº 

  iº}ÈÏȈËã°ˆmº
      
     iã« ∀[, \ ∈ ( Òm˝˰ˆmËÓÓººÒ°ãÈτªãËäËӈ x − τy ∈ E vºãȰӺ¹°ÒÏ0