Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 242 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
022
2
22
2
≤− = + = + ( , ) (,) (,) (,) (,) , .x yx y xx xy yy x xy y
ττ τ τ τ ττ
ºãËÓÓ©® }mȯÈÓ©® ¯Ë²ãËÓ Ó˺¯ÒÈËãËÓ ã« ãºº
τ
ºÈ Ò ºã}º
ºÈ}ºÈ˺Ò°}¯ÒäÒÓÈÓÓ˹ºãºÎÒËãËÓº˰
(,)xy x y
2
22
0−≤

˺¯ËäÈº}ÈÏÈÓÈ
ÈÈ

Ívrjojz ·zv
tnéjkntxzkv Çv¡qÈyt¹rvkxrvmv wénkéjjnzx¹ kéjknt
xzkvzvmljqzvsrvzvmljrvmljësnuntz
x
q
y
sqtnptvojkqxqun
vã˰mÒË

s˯ÈmËÓ°mº
¯ËºãÓÒ}È
iã«ã©²
Eyx
,
ÒäËËä˰ºÓ˯ÈmËÓ°mº
xy x y
+≤ +
iº}ÈÏÈËã°mº
jÏÈ}°ÒºäËm}ãÒºmÈ¹¯º°¯ÈÓ°mÈÒÓ˯ÈmËÓ°mÈzºÒrÓ«}ºm°}ººÒäËËä
xy xyxy xx xy yy+=++= + +
2
2(,)(,)(,)(,)

≤+ +=+
x xyy xy
22
2
2()

º}Èm°ÒãÓ˺¯Ò ÈËãÓº°ÒÒ°Ëã
xy+
Ò
xy+
¹ºãÈËäÓ˯ÈmËÓ°mº
¯ËºãÓÒ}È
vã˰mÒËº}ÈÏÈÓº
|äËÒä º Ó˯ÈmËÓ°mÈ ÒrÓ«}ºm°}ºº Ò ¯ËºãÓÒ}È ã« Ëm}ãÒºmÈ
¹¯º°¯ÈÓ°mÈÒÏ¹¯Òä˯È
0
°ÒäËmÒ
],1[;,
||
1
2
1
2
1
ni
ii
k
k
k
k
j
j
n
i
ii
=
===
η
ξ
η
ξ
η
ξ

],1[;,
)(
1
2
1
2
1
2
ni
ii
k
k
k
k
j
j
n
i
ii
=
++
===
η
ξ
η
ξ
η
ξ

mºm¯Ëä«}È}ã«Ëm}ãÒºmÈ¹¯º°¯ÈÓ°mÈÒÏ¹¯Òä˯È
0

°
°ººmË°mËÓÓº
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                                                 2                         2
                0 ≤ ( x − τ y , x − τ y ) = ( x , x ) − 2( x , y )τ + ( y , y )τ 2 = x               − 2( x , y )τ + y τ 2 , ∀τ            .
            
            ºã‚ËÓÓ©® }mȯȈө® ˆ¯Ë²ãËÓ Ó˺ˆ¯ÒȈËãËÓ ã« ã ­ºº τ ˆºÈ Ò ˆºã }º
                                                                                                                       2       2
         ˆºÈ}ºÈ˺Ұ}¯ÒäÒÓÈӈÓ˹ºãºÎ҈ËãËÓˆº˰ˆ  ( x , y ) 2 − x y ≤ 0 
         
         
    ‘˺¯ËäȺ}ÈÏÈÓÈ
         
         
 ~ÈÈÈ           Ívrjojz ·zv tnéjkntxzkv Çv¡qÈyt¹rvkxrvmv wénkéjjnzx¹ k éjknt
 
 
                   xzkvzvmljqzvsrvzvmljrvmljësnuntz€xqysqtnptvojkqxqu€n
            
            
            
 vã˰ˆmÒË             iã«ã ­©² x, y ∈ E ÒäËˈä˰ˆºÓ˯ÈmËÓ°ˆmº x + y ≤ x + y 
 
  s˯ÈmËÓ°ˆmº
 ˆ¯Ë‚ºãÓÒ}È 
        
  iº}ÈÏȈËã°ˆmº
     
     
     jÏÈ}°ÒºäËm}ãÒºmȹ¯º°ˆ¯ÈÓ°ˆmÈÒÓ˯ÈmËÓ°ˆmÈzº Òr‚Ó«}ºm°}ººÒäËËä
     
                                                  2
                                        x+y           = ( x + y , x + y ) = ( x , x ) + 2( x , y ) + ( y , y ) ≤ 
        
                                                               2                       2
         ≤ x                   +2 x   y + y            = ( x + y ) 2 
        
     ºˆ}‚Èm°Òã‚Ó˺ˆ¯ÒȈËã Óº°ˆÒÒ°Ëã x + y Ò x + y ¹ºã‚ÈËäÓ˯ÈmËÓ°ˆmº
     ˆ¯Ë‚ºã ÓÒ}È
     
     
   vã˰ˆmÒ˺}ÈÏÈÓº
       
       
       
       |ˆäˈÒä ˆº Ó˯ÈmËÓ°ˆmÈ zº Òr‚Ó«}ºm°}ºº Ò ˆ¯Ë‚ºã ÓÒ}È ã« Ëm}ãÒºmÈ
¹¯º°ˆ¯ÈÓ°ˆmÈÒϹ¯Òä˯È0 ° ÒäË ˆmÒ
       
                              n               k            k                     n                          k              k
                           | ∑ ξ iηi |≤      ∑ξ 2j ∑ηk2  ∑ (ξ i + ηi ) 2                   ≤      ∑ξ 2j + ∑ηk2 
                            i =1             j =1         k =1                  i =1                        j =1       k =1

                          ∀ξ i ,ηi ;      i = [1, n]                          ∀ξ i ,ηi ;       i = [1, n]
       
mˆºm¯Ëä«}È}ã«Ëm}ãÒºmȹ¯º°ˆ¯ÈÓ°ˆmÈÒϹ¯Òä˯È0 ° °ººˆmˈ°ˆmËÓÓº