Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 244 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
º©
(, ) (, ) (, ) (,) ;
(, )
(,)
′′
=
+
=
+
′′
==
′′
ee eg e eg ee
eg
ee
12 1 2 1 1 2 11
12
11
0
ααα

~ÈäËÒä º
eo
2
 iË®°mÒËãÓº ÒÏ
oe g e g g=
=+
=+
22 12 1
αα
°ãËË
ãÒÓË®ÓÈ« ÏÈmÒ°Ò亰
g
1
Ò
g
2
 º ¹¯ºÒmº¯ËÒ °ãºmÒ¹¯ÒÓÈãËÎÓº°Ò
ªÒ²ªãËäËÓºmÈÏÒ°°äãËää
°
iº¹°Òä˹˯ºÓÈäÈ㺰º¯ººÓÈãÒϺmÈ
k
ªãËäËÓÒ¹¯ÒäËäm
˰mË
e
k
ªãËäËÓ
=
+=
1
1
k
j
jjkk
ege
α
 º¯ËËä º©
;0),(
=
ik
ee
]1,1[
= ki

.]1,1[;
),(
),(
;0),(),(),(),(
1
1
=
=
=
+
=
+
=
=
ki
ee
ge
eegeegeee
ii
ki
i
iiiki
k
j
jjkiki
α
αα
º}ÈÎËä˹˯ºmªºä°ãÈË
eo
k

iº¹°Òä ¹¯ºÒmÓºË
=+
=
=
eg eo
kk jj
j
k
α
1
1
 |ÓÈ}º ¹º°}ºã} m°Ë ªãËäËÓ©
=−ei k
i
;[, ]11
¹º ¹º°¯ºËÓÒ˰ ÓË}ºº¯©Ë ãÒÓˮөË }ºäÒÓÈÒÒ ªãË
äËÓºm
gi k
i
;[, ]
=−
11
 ä© ¹¯Ò²ºÒä } ãÒÓˮӺ® ÏÈmÒ°Ò亰Ò
gi k
i
;[,]
=
1

º¹¯ºÒmº¯ËÒ°ãºmÒ˺¯Ëä©vã˺mÈËãÓº
eo
k

°
¯ºË°°º¯ººÓÈãÒÏÈÒÒ ¹¯ººãÎÈË°« ºҰ˯¹ÈÓÒ« äÓºÎ˰mÈªãËäËÓºm
],1[;
nig
i
=
 ¹º°ãË ˺ º°ÈºÓº ¹¯ºÓº¯äÒ¯ºmÈ¹ºãËÓÓ©Ë ªãËäËÓ©
],1[;
nie
i
=
 º© ¹ºãÒ Ò°}ºä©® º¯ºÓº¯äÒ¯ºmÈÓÓ©® ÈÏÒ°
n
n
e
e
e
e
e
e
,...,,
2
2
1
1

˺¯ËäÈº}ÈÏÈÓÈ
¯ºË°°º¯ººÓÈãÒÏÈÒÒ¯ÈäÈbäÒÈäºÎË©¹¯ÒäËÓËÓ}㺮mºä
Ò°ãË Ò } ãÒÓˮӺ ÏÈmÒ°Ò亮 °Ò°ËäË ªãËäËÓºm Ëm}ãÒºmÈ ¹¯º°¯ÈÓ°mÈ p°ãÒ
º¯ººÓÈãÒÏËäÈ« °Ò°ËäÈ ãÒÓˮӺ ÏÈmÒ°ÒäÈ º ÓÈ ÓË}ºº¯ºä ÈË ä© ¹ºãÒä
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



            ˆº­©
        
                                                                                                                   (e1′ , g 2 )
                           (e1′ , e2′ ) = (e1′ , g 2 + α e1′ ) = (e1′ , g 2 ) + α (e1′ , e1′ ) = 0 ; α = −                      
                                                                                                                   (e1′ , e1′ )
         
              ~ÈäˈÒä ˆº e2′ ≠ o  iË®°ˆm҈Ëã Óº ÒÏ o = e2′ = g 2 + α e1′ = g 2 + α g1  °ãË‚ˈ
              ãÒÓË®ÓÈ« ÏÈmÒ°Ò亰ˆ  g1  Ò g 2  ˆº ¹¯ºˆÒmº¯Ë҈ ‚°ãºmÒ  ¹¯ÒÓÈãËÎÓº°ˆÒ
              ªˆÒ²ªãËäËӈºm­ÈÏÒ°‚ °äãËää‚ 
              
              
         °iº¹‚°ˆÒäˆË¹Ë¯ ˆºÓÈä‚È㺰 º¯ˆººÓÈãÒϺmȈ  kªãËäËӈÒ¹¯ÒäËäm
                                                                           k −1
              }È˰ˆmË ek′  ªãËäËӈ ek′ = g k +                         ∑ α j e′j     ºˆ¯Ë­‚Ëä ˆº­© (e k′ , ei′ ) = 0 ; 
                                                                           j =1
               ∀i = [1, k − 1] 
         
         
                                                                k −1
                                      (ei′ , ek′ ) = (ei′ , g k + ∑α j e ′j ) = (ei′ , g k ) + α i (ei′ , ei′ ) = 0 ;
                                                                 j =1
                                                                                                                        
                                            (e ′ , g )
                                      αi = − i k ;               i = [1, k − 1] .
                                            (ei′ , ei′ )
         
         
         
              º}ÈÎËäˆË¹Ë¯ ˆºmªˆºä°ã‚ÈË e k′ ≠ o 
              
                                                                    k −1
              iº¹‚°ˆÒä ¹¯ºˆÒmÓºË e k′ = g k +                    ∑ α j e ′j = o  |ÓÈ}º ¹º°}ºã                    }‚ m°Ë ªãËäËӈ©
                                                                    j =1
              ei′ ; i = [1, k − 1]  ¹º ¹º°ˆ¯ºËÓÒ  ˰ˆ  ÓË}ºˆº¯©Ë ãÒÓˮөË }ºä­ÒÓÈÒÒ ªãË
              äËӈºm g i ; i = [1, k − 1]  ä© ¹¯Ò²ºÒä } ãÒÓˮӺ® ÏÈmÒ°Ò亰ˆÒ g i ; i = [1, k ] 
              ˆº¹¯ºˆÒmº¯Ë҈‚°ãºmÒ ˆËº¯Ëä©vã˺mȈËã Óº e k′ ≠ o 
              
              
         °¯º˰° º¯ˆººÓÈãÒÏÈÒÒ ¹¯ººãÎÈˈ°« º Ò°˯¹ÈÓÒ« äÓºÎ˰ˆmÈ ªãËäËӈºm
               g i ; i = [1, n]  ¹º°ãË Ëº º°ˆÈˆºÓº ¹¯ºÓº¯äÒ¯ºmȈ  ¹ºã‚ËÓÓ©Ë ªãËäËӈ©
               ei′ ; i = [1, n]        ˆº­©          ¹ºã‚҈             Ò°}ºä©®           º¯ˆºÓº¯äÒ¯ºmÈÓÓ©®                    ­ÈÏÒ°
                e1′ e ′2          e ′ 
                     ,     , ... , n  
                 e1′ e ′2         e ′n 
         
         
     ‘˺¯ËäȺ}ÈÏÈÓÈ
      
      
      ¯º˰°º¯ˆººÓÈãÒÏÈÒÒ€¯ÈäÈbäÒˆÈäºÎˈ­©ˆ ¹¯ÒäËÓËÓ}ã ­º®mˆºä
Ò°ãË Ò } ãÒÓˮӺ ÏÈmÒ°Ò亮 °Ò°ˆËäË ªãËäËӈºm Ëm}ãÒºmÈ ¹¯º°ˆ¯ÈÓ°ˆmÈ p°ãÒ
º¯ˆººÓÈãÒςËäÈ« °Ò°ˆËäÈ ãÒÓˮӺ ÏÈmÒ°ÒäÈ ˆº ÓÈ ÓË}ºˆº¯ºä ÈË ä© ¹ºã‚Òä