Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 243 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã
 

pm}ãÒºmº¹¯º°¯ÈÓ°mº
||
()() () ()
xyd x d y d
τττ ττ ττ
α
β
α
β
α
β
∫∫
22

(() ()) () ()
xyd xd yd
τττ ττ ττ
α
β
α
β
α
β
+≤ +
∫∫
22 2

|¹¯ËËãËÓÒË

{Ëm}ãÒºmºä¹¯º°¯ÈÓ°mË
E
knsq·qtvpymsjäËÎÓËÓãËm©äÒªãË
äËÓÈäÒ
x
Ò
y
ÓÈϺmËäÒ°ãº
απ
[, ]0
ºmãËmº¯«ËË°ººÓºËÓÒ
cos
(,)
α
=
xy
xy

jÏÓ˯ÈmËÓ°mÈÒrÓ«}ºm°}ºº˺¯ËäÈ°ãËËºmËãÒÒÓÈãÈ
°˰mËã«ãº®¹È¯©ÓËÓãËm©²ªãËäËÓºmm
E

|¹¯ËËãËÓÒË

{ Ëm}ãÒºmºä ¹¯º°¯ÈÓ°mË
E
ÓËÓãËm©Ë ªãËäËÓ©
x
Ò
y
ÓÈÏ©mÈ°«
vézvmvtjstuq˰ãÒ
0),( =yx

sãËmº®ªãËäËÓËm}ãÒºmÈ¹¯º°¯ÈÓ°mÈ°ÒÈË°«º¯ººÓÈãÓ©äãºä¯
ºäªãËäËÓ
|¯ºÓº¯äÒ¯ºmÈÓÓ©®ÈÏÒ°|¯ººÓÈãÒÏÈ Ò«ÈÏÒ°È
|¹¯ËËãËÓÒË

{}ºÓËÓºä˯ӺäËm}ãÒºmºä¹ ¯º°¯ÈÓ°mË
E
n
ÈÏÒ°
},...,,{
21
n
eee
ÓÈ
Ï©mÈË°«vézvtvéuqévkjttu˰ãÒ
(, ) , , [,]
ee ij n
ij ij
=∀=
δ
1

˺¯ËäÈ

¯ÈäÈ
bäÒÈ
{º m°«}ºä Ëm}ãÒºmºä ¹¯º°¯ÈÓ°mË
E
n
°˰mËº¯ºÓº¯ äÒ¯º
mÈÓÓ©®ÈÏÒ°
iº}ÈÏÈËã°mº
°°m
E
n
ÈÓ ÓË}ºº¯©® mººË ºmº¯« Ó˺¯ººÓÈãÓ©® ÈÏÒ°
},...,,{
21
n
ggg
º°¯ºÒämÓÈÈãËÈÏÒ°
},...,,{
21
n
eee
ÒÏ¹º¹È¯Óºº¯ººÓÈãÓ©²
ªãËäËÓºmº°ã˺mÈËãÓºË¹º°¯ºËÓÒËªÒ²ªãËäËÓºmËäÓÈÏ©mÈwév
|nxxvuvézvmvtjsqoj|qqijoqxj
{ºÏäËä
=eg
11
 wãËäËÓ
e
2
Ëä Ò°}ÈmmÒË
=+
eg e
22 1
α
 Ë
α

ÓË}ºº¯È«}ºÓ°ÈÓÈº˯Ëä
α
È}º©
(, )
′′
=ee
12
0
ã«ªººº°ÈºÓº
cÈÏËã
pm}ãÒºmº¹¯º°ˆ¯ÈÓ°ˆmº



     β                             β                  β                     β                                   β                     β

    | ∫ x(τ ) y(τ )dτ | ≤ ∫ x           2
                                            (τ )dτ    ∫y   2
                                                               (τ )dτ     ∫ ( x(τ ) + y(τ ) )    2
                                                                                                       dτ ≤     ∫x   2
                                                                                                                         (τ )dτ +     ∫ y 2 (τ )dτ 
     α                             α                  α                     α                                   α                     α
           
           
    |¹¯ËËãËÓÒË          { Ëm}ãÒºmºä ¹¯º°ˆ¯ÈÓ°ˆmË E knsq·qtvp ymsj äË΂ ÓËӂãËm©äÒ ªãË
    
                          äËӈÈäÒ xÒ yÓÈϺmËäҰ㺠α ∈[ 0, π ] ‚ºmãˈmº¯« Ë˰ººˆÓº ËÓÒ 
                                       ( x, y)
                          cos α =                
                                        x y
        
        
        jÏÓ˯ÈmËÓ°ˆmÈzº Òr‚Ó«}ºm°}ºº ˆËº¯ËäÈ °ãË‚ˈˆºmËãÒÒÓÈ‚ãÈ
°‚Ë°ˆm‚ˈã«ã ­º®¹È¯©ÓËӂãËm©²ªãËäËӈºmmE
        
        
 |¹¯ËËãËÓÒË   { Ëm}ãÒºmºä ¹¯º°ˆ¯ÈÓ°ˆmË E ÓËӂãËm©Ë ªãËäËӈ© x Ò y ÓÈÏ©mÈ ˆ°«
        vézvmvtjst€uq˰ãÒ ( x, y ) = 0 
        
        
        s‚ãËmº®ªãËäËӈËm}ãÒºmȹ¯º°ˆ¯ÈÓ°ˆmȰ҈Èˈ°«º¯ˆººÓÈã Ó©äã ­ºä‚¯‚
ºä‚ªãËäËӈ‚
        
        
        
        
|¯ˆºÓº¯äÒ¯ºmÈÓÓ©®­ÈÏÒ°|¯ˆººÓÈãÒÏÈÒ«­ÈÏÒ°È
           
           
           
    |¹¯ËËãËÓÒË          {}ºÓËÓºä˯ӺäËm}ãÒºmºä¹¯º°ˆ¯ÈÓ°ˆmË E n ­ÈÏÒ° {e1, e 2 ,..., e n } ÓÈ
    
                          Ï©mÈˈ°«vézvtvéuqévkjtt€u˰ãÒ ( ei , e j ) = δij , ∀i , j = [1, n] 
           
           
           

 ‘˺¯ËäÈ                {º m°«}ºä Ëm}ãÒºmºä ¹¯º°ˆ¯ÈÓ°ˆmË E n  °‚Ë°ˆm‚ˈ º¯ˆºÓº¯ äÒ¯º
                 mÈÓÓ©®­ÈÏÒ°
  €¯ÈäÈ
 bäÒˆÈ 
           
     iº}ÈÏȈËã°ˆmº
          
          °‚°ˆ  m E n  ÈÓ ÓË}ºˆº¯©® mºº­Ë ºmº¯« Ó˺¯ˆººÓÈã Ó©® ­ÈÏÒ°
               {g1, g 2 ,..., g n } º°ˆ¯ºÒämÓÈÈãË­ÈÏÒ° {e1′ , e 2′ ,..., e n′ } ÒϹº¹È¯Óºº¯ˆººÓÈã Ó©²
               ªãËäËӈºmº°ã˺mȈËã Ӻ˹º°ˆ¯ºËÓÒ˪ˆÒ²ªãËäËӈºm­‚ËäÓÈÏ©mȈ wév
               |nxxvuvézvmvtjsqoj|qqijoqxj
          
               {ºÏ äËä e1′ = g1  wãËäËӈ e2′  ­‚Ëä Ò°}Ȉ  m mÒË e2′ = g 2 + α e1′  Ë α 
               ÓË}ºˆº¯È«}ºÓ°ˆÈӈȁº­Ë¯Ëä α ˆÈ}ˆº­© ( e1′ , e2′ ) = 0 㫪ˆººº°ˆÈˆºÓº