Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 245 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã
 

pm}ãÒºmº¹¯º°¯ÈÓ°mº
ºÓÈãÒÏËäÈ« °Ò°ËäÈ ãÒÓˮӺ ÏÈmÒ°ÒäÈ º ÓÈ ÓË}ºº¯ºä ÈË ä© ¹ºãÒä ÓãËmº®
ªãËäËÓ¹º°ãËº¯º°È}ºº¯ººäºÎÓº¹¯ººãÎÒ¹¯ºË°°º¯ººÓÈãÒÏÈÒÒ
zºº¯ÒÓÈÓºË¹¯Ë°ÈmãËÓÒË°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«
ºãËÏÓ©ä ÒÓ°¯äËÓºä Ò°°ã˺mÈÓÒ« °mº®°m ÓË}ºº¯ºº ÓÈº¯È ªãËäËÓºm
{ , ,..., }ff f
k
12
mËm}ãÒºmºä¹¯º°¯ÈÓ°mË«mã«Ë°«äÈ¯ÒÈ¯ÈäÈ
|¹¯ËËãËÓÒË

{ Ëm}ãÒºmºä ¹¯º°¯ÈÓ°mË
E
äÈ¯ÒË® ¯ÈäÈ °Ò°Ëä© ªãËäËÓºm
{ , ,..., }ff f
k
12
ÓÈÏ©mÈË°«äÈ¯ÒÈ
),(...),(),(
............
),(...),(),(
),(...),(),(
21
22221
11211
kkkk
k
k
ffffff
ffffff
ffffff
ñ =

°m
E
n
ÈÓ ÈÏÒ°
{, ,..., }
gg g
n
12
 v}È㫯ӺË ¹¯ºÒÏmËËÓÒË ªãËäËÓºm
=
=
n
i
ii
gx
1
ξ
Ò
=
=
n
j
jj
gy
1
η
°ºãȰӺº¹¯ËËãËÓÒ¹¯Ë°Èmã«Ë°«mmÒË
∑∑∑∑
======
===
n
i
n
j
jiij
n
i
n
j
jiji
n
j
jj
n
i
ii
ggggyx
111111
),(),(),(
η
ξ
γη
ξ
η
ξ

Ë
γ
ij i j
gg ij n
=∀=
(, ); , [,]1
}ºä¹ºÓËÓ© äÈ¯Ò©
Γ
g
 ÓÈÏ©mÈË亮 ijoqxtvp ujz
éq|npéjuj~ÈäËÒäºªÈäÈ¯ÒÈ°ÒääË¯Ò˰}È«Ò«mã«Ë°«äÈ¯ÒË®ÒãÒÓË®
ÓººÁÓ}ÒºÓÈãÈÏÈÈ˺°}È㫯ӺË¹¯ºÒÏmËËÓÒËºÈ}ºº¯ÒÓÈÓºË¹¯Ë°Èm
ãËÓÒË°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«äºÎË©ÏȹҰÈÓºÈ}
nnnnn
n
n
n
g
g
g
gggggg
gggggg
gggggg
yñxyx
η
η
η
ξ
ξ
ξ
...
),(...),(),(
............
),(...),(),(
),(...),(),(
...),(
2
1
21
22221
11211
21
T
==

cÈÏËã
pm}ãÒºmº¹¯º°ˆ¯ÈÓ°ˆmº



ºÓÈãÒςËäÈ« °Ò°ˆËäÈ ãÒÓˮӺ ÏÈmÒ°ÒäÈ ˆº ÓÈ ÓË}ºˆº¯ºä ÈË ä© ¹ºã‚Òä ӂãËmº®
ªãËäËӈ¹º°ã˺ˆ­¯º°È}ºˆº¯ººäºÎÓº¹¯ººãÎ҈ ¹¯º˰°º¯ˆººÓÈãÒÏÈÒÒ
            
            
            
            
zºº¯ÒÓȈӺ˹¯Ë°ˆÈmãËÓÒ˰}È㫯Ӻº¹¯ºÒÏmËËÓÒ«
            
            
            
            ºãËÏÓ©ä ÒÓ°ˆ¯‚äËӈºä Ò°°ã˺mÈÓÒ« °mº®°ˆm ÓË}ºˆº¯ºº ÓÈ­º¯È ªãËäËӈºm
{ f 1 , f 2 ,..., f k } mËm}ãÒºmºä¹¯º°ˆ¯ÈÓ°ˆmË«mã«Ëˆ°«äȈ¯ÒÈ€¯ÈäÈ
            
            
  |¹¯ËËãËÓÒË            { Ëm}ãÒºmºä ¹¯º°ˆ¯ÈÓ°ˆmË E äȈ¯ÒË® €¯ÈäÈ °Ò°ˆËä© ªãËäËӈºm
                  { f 1 , f 2 ,..., f k } ÓÈÏ©mÈˈ°«äȈ¯ÒÈ
                          
                                                              ( f1 , f1 ) ( f 2 , f1 ) ... ( f k , f1 )
                                                                      ( f1 , f 2 ) ( f 2 , f 2 ) ... ( f k , f 2 )
                                                             ñ =
                                                                          ...           ...      ...      ...
                                                                      ( f1 , f k ) ( f 2 , f k ) ... ( f k , f k ) 
                          
             
             
             
             ‚°ˆ  m E n  ÈÓ ­ÈÏÒ° {g1 , g 2 ,..., g n }  v}È㫯ӺË ¹¯ºÒÏmËËÓÒË ªãËäËӈºm
       n                      n
x = ∑ ξ i g i Ò y = ∑η j g j °ºãȰӺº¹¯ËËãËÓÒ ¹¯Ë°ˆÈmã«Ëˆ°«mmÒË
      i =1                    j =1
             
                                                    n       n                 n    n                         n    n
                                     ( x, y ) = (∑ ξ i g i , ∑η j g j ) = ∑ ∑ ξ iη j ( g i , g j ) = ∑ ∑ γ ijξ iη j 
                                                i =1       j =1              i =1 j =1                      i =1 j =1
             
             

Ë γ ij = ( g i , g j ) ; ∀i , j = [1, n]  }ºä¹ºÓËӈ© äȈ¯Ò© Γ                                    ÓÈÏ©mÈË亮 ijoqxtvp ujz
                                                                                                    g
éq|np­éjuj~ÈäˈÒ䈺ªˆÈäȈ¯ÒȰÒääˈ¯Ò˰}ȫҫmã«Ëˆ°«äȈ¯ÒË®­ÒãÒÓË®
ÓººÁ‚Ó}ÒºÓÈãÈÏÈÈ Ëº°}È㫯Ӻ˹¯ºÒÏmËËÓÒË‘ºÈ}ºº¯ÒÓȈӺ˹¯Ë°ˆÈm
ãËÓÒ˰}È㫯Ӻº¹¯ºÒÏmËËÓÒ«äºÎˈ­©ˆ ÏȹҰÈÓºˆÈ}


                                                                                  ( g 1 , g1 )   ( g 2 , g1 ) ... ( g n , g1 ) η1
                              T                                                   ( g1 , g 2 ) ( g 2 , g 2 ) ... ( g n , g 2 ) η 2
             ( x, y ) = x     g
                                  ñ         y   g
                                                    = ξ1 ξ 2       ... ξ n                                                         
                                        g                                             ...           ...      ...      ...      ...
                                                                                  ( g1 , g n ) ( g 2 , g n ) ... ( g n , g n ) η n