Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 247 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã
 

pm}ãÒºmº¹¯º°¯ÈÓ°mº
º¯ÈÏÈÏÒ°m°mºË®ãÒÓˮӺ®ººãº}ËÒ}ÓÒä¹¯ÒäËÓÒä¯ËÏãÈ˺¯Ë
ä©
vã˰mÒËº}ÈÏÈÓº
˹˯äºÎÓºº}ÈÏÈÓ˺²ºÒ亰m˺¯ËäË
˺¯ËäÈ

z¯Ò˯Ү
vÒãm˰¯È
iã« ¹ºãºÎÒËãÓº® º¹¯ËËãËÓÓº°Ò }mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ m
n
Λ
Ó˺²ºÒäº Ò º°ÈºÓº º©m°Ë ãÈmÓ©ËäÒÓº¯©˺äÈ¯Ò
©ÒäËÒËmÒ
det
...
...
... ... ... ...
...
;[,]
ϕϕ ϕ
ϕϕ ϕ
ϕϕ ϕ
11 12 1
21 22 2
12
1
k
k
kk kk
kn
=
©ãÒ¹ºãºÎÒËãÓ©äÒ
iº}ÈÏÈËã°mºÓ˺²ºÒ亰Ò
°{ ¹ ©ãº ºäËËÓº º mmËËÓÒË °}È㫯Ӻº ¹¯ºÒÏmËËÓÒ« m ãÒÓˮӺä
¹¯º°¯ÈÓ°mË ¯ÈmÓº°ÒãÓº ÏÈÈÓÒ ÓË}ºº¯ºº °ÒääË¯ÒÓºº ÒãÒÓˮӺº
ÁÓ}ÒºÓÈãÈ ¹º¯ºÎÈ˺ ¹ºãºÎÒËãÓº º¹¯ËËãËÓÓ©® }mȯÈÒÓ©®
ÁÓ}ÒºÓÈã |¯ÈÓº ¹º ¹ºãºÎÒËãÓº º¹¯ËËãËÓÓºä }mȯÈÒÓºä
ÁÓ}ÒºÓÈã ºÓºÏÓÈ Óº mº°°ÈÓÈmãÒmÈË°« ¹º¯ºÒmÒ® ˺ °ÒääË¯ÒÓ©®
ÒãÒÓˮө® ÁÓ}ÒºÓÈã }ºº¯©® äºÎÓº ¹¯ÒÓ« ÏÈ °}È㫯ӺË ¹¯ºÒÏmËË
ÓÒË
°º}ÈÎËäº¹ºãºÎÒËãÓºº¹¯ËËãËÓÓºº}mȯÈÒÓººÁÓ}ÒºÓÈãÈm°Ë
ãÈmÓ©Ë äÒÓº¯© ¹ºãºÎÒËãÓ© iË®°mÒËãÓº ˰ãÒ mm˰Ò m
n
Λ
°}È㫯ӺË
¹¯ºÒÏmËËÓÒË ¹¯Ò ¹ºäºÒ ˺ ¹º¯ºÎÈ˺ ÒãÒÓˮӺº ÁÓ}ÒºÓÈãÈ º
äÈ¯ÒÈ ªºº }mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ m ÈÏÒ°Ë
{, ,..., }
gg g
n
12
˰
äÈ¯ÒÈ¯ÈäÈ
cȰ°äº¯Òä ¹º°ã˺mÈËãÓº ãÒÓˮөË ººãº}Ò °Ò°Ëä ªãËäËÓºm È
{ , ,..., }; [ , ]
gg g k n
k
12
1
=
{°ËªÒ°Ò°Ëä©ãÒÓˮӺÓËÏÈmÒ°Òä©Ë}È}¹º äÓº
Î˰mÈÈÏÒ°ÈÒ¹º˺¯ËäË°ººmË°mÒËÒääÈ¯Ò©¯ÈäÈÒäË
¹ºãºÎÒËãÓ©Ëº¹¯ËËãÒËãÒ¹ºªºä
],1[;0
),(...),(),(
............
),(...),(),(
),(...),(),(
det
...
............
...
...
det
21
22212
12111
21
22221
11211
nk
gggggg
gggggg
gggggg
kkkk
k
k
kkkk
k
k
=>=
βββ
βββ
βββ

˺¯ËäÈº}ÈÏÈÓÈ
cÈÏËã
pm}ãÒºmº¹¯º°ˆ¯ÈÓ°ˆmº



       º­¯Èς ˆ­ÈÏÒ°m°mºË®ãÒÓˮӺ®º­ºãº}ËÒ}ÓÒ乯ÒäËÓÒä¯Ëς㠈ȈˆËº¯Ë
       ä©
       
   vã˰ˆmÒ˺}ÈÏÈÓº
       
       
       ‘˹˯ äºÎÓºº}ÈÏȈ Ó˺­²ºÒ亰ˆ mˆËº¯ËäË
       
 ‘˺¯ËäÈ       iã« ¹ºãºÎ҈Ëã Óº® º¹¯ËËãËÓÓº°ˆÒ }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ m
                   Λn  Ó˺­²ºÒäº Ò º°ˆÈˆºÓº ˆº­© m°Ë ãÈmÓ©Ë äÒÓº¯© ˺ äȈ¯Ò
  z¯ÒˆË¯Ò®
                         ©ÒäË ÒËmÒ
 vÒãm˰ˆ¯È 
                         
                                                             ϕ11 ϕ12              ... ϕ1k
                                                             ϕ 21 ϕ 22            ... ϕ 2 k
                                                         det                                        ; k = [1, n] 
                                                              ...  ...            ...  ...
                                                             ϕk1 ϕk 2             ... ϕ kk
                         
                         ­©ãÒ¹ºãºÎ҈Ëã Ó©äÒ
       
 iº}ÈÏȈËã°ˆmºÓ˺­²ºÒ亰ˆÒ
      
      °{ ¹ ­©ãº ºˆäËËÓº ˆº mmËËÓÒË °}È㫯Ӻº ¹¯ºÒÏmËËÓÒ« m ãÒÓˮӺä
           ¹¯º°ˆ¯ÈÓ°ˆmË ¯ÈmÓº°Òã Óº ÏÈÈÓÒ  ÓË}ºˆº¯ºº °Òääˈ¯ÒÓºº ­ÒãÒÓˮӺº
           Á‚Ó}ÒºÓÈãÈ ¹º¯ºÎÈ Ëº ¹ºãºÎ҈Ëã Óº º¹¯ËËãËÓÓ©® }mȯȈÒÓ©®
           Á‚Ó}ÒºÓÈã |­¯ÈˆÓº ¹º ¹ºãºÎ҈Ëã Óº º¹¯ËËãËÓÓºä‚ }mȯȈÒÓºä‚
           Á‚Ó}ÒºÓÈã‚ ºÓºÏÓÈÓº mº°°ˆÈÓÈmãÒmÈˈ°« ¹º¯ºÒm Ò® ˺ °Òääˈ¯ÒÓ©®
           ­ÒãÒÓˮө® Á‚Ó}ÒºÓÈã }ºˆº¯©® äºÎÓº ¹¯ÒÓ«ˆ  ÏÈ °}È㫯ӺË ¹¯ºÒÏmËË
           ÓÒË
      
      °º}ÈÎË䈺‚¹ºãºÎ҈Ëã Óºº¹¯ËËãËÓÓºº}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈm°Ë
                  ãÈmÓ©Ë äÒÓº¯© ¹ºãºÎ҈Ëã Ó© iË®°ˆm҈Ëã Óº ˰ãÒ mm˰ˆÒ m Λn  °}È㫯ӺË
                  ¹¯ºÒÏmËËÓÒË ¹¯Ò ¹ºäºÒ ˺ ¹º¯ºÎÈ Ëº ­ÒãÒÓˮӺº Á‚Ó}ÒºÓÈãÈ ˆº
                  äȈ¯ÒÈ ªˆºº }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ m ­ÈÏÒ°Ë {g1 , g 2 ,..., g n }  ˰ˆ 
                  äȈ¯ÒÈ€¯ÈäÈ
          
                  cȰ°äºˆ¯Òä ¹º°ã˺mȈËã Óº ãÒÓˮөË º­ºãº}Ò °Ò°ˆËä ªãËäËӈºm mÒÈ
                  {g1 , g 2 ,..., g k } ; k = [1, n] {°ËªˆÒ°Ò°ˆËä©ãÒÓˮӺÓËÏÈmÒ°Òä©Ë }È}¹ºäÓº
                  Î˰ˆmÈ­ÈÏÒ°È Ò¹ºˆËº¯Ëä˰ººˆmˈ°ˆm‚ ÒËÒääȈ¯Ò©€¯ÈäÈÒäË
                    ˆ¹ºãºÎ҈Ëã ө˺¹¯ËËã҈ËãÒ¹ºªˆºä‚
                  
                        β11 β12              ... β1k        ( g 1 , g1 ) ( g1 , g 2 )                ... ( g1 , g k )
                        β    β 22            ... β 2k       ( g 2 , g1 ) ( g 2 , g 2 )               ... ( g 2 , g k )
                    det 21                            = det                                                            > 0 ; k = [1, n] 
                         ...  ...            ... ...             ...          ...                    ...      ...
                        β k1 β k 2           ... β kk       ( g k , g1 ) ( g k , g 2 )               ... ( g k , g k )
          
          

    ‘˺¯ËäȺ}ÈÏÈÓÈ