Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 249 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã
 

pm}ãÒºmº¹¯º°¯ÈÓ°mº
|¯ººÓÈãÓ©ËäÈ¯Ò©mËm}ãÒºmºä¹¯º°¯ÈÓ°mË
cȰ°äº¯Òä mÈ ¯ÈÏãÒÓ©² º¯ºÓº¯äÒ¯ºmÈÓÓ©² ÈÏÒ°È
{, ,..., }ee e
n
12
Ò
{, ,..., }
′′
ee e
n
12
m
E
n
°äÈ¯ÒË®¹ ˯˲ºÈ
S
º¹Ë¯mººÈÏÒ°È}ºmº¯ºäº°}ºã}m
ªÒ²ÈÏҰȲäÈ¯ÒÈ¯ÈäÈËÒÓÒÓÈ«ºÒÏ°ººÓºËÓÒ«
ΓΓ
=
ee
SS
T
°ãË
Ë ¯ÈmËÓ°mº
ΕΕ
=
SS
T
 ÒãÒ
ESS=
T
 º°}ºã} äÈ¯ÒÈ ¹Ë¯Ë²ºÈ
S
ÓËm©¯ºÎËÓÓÈ«ºº}ºÓÈËãÓºÒäËËä
SS
=
1T

{ ¯ÈÏm˯Óº® Áº¯äË ¯ÈmËÓ°mº
ESS=
T
¹¯ÒÓÒäÈË
],1[,;
1
T
nlk
n
i
ilkikl
==
=
σσδ
}ºº¯ºËã«ȰÓºº°ãÈ«
n = 3
©ãº¹ºãËÓºm¹
sȹºäÓÒäº°ºãȰӺº¹¯ËËãËÓÒäÈ¯ÒÈ
Q
ºmãËmº¯«È«°º
ºÓºËÓÒ
QQ
T
=
1
ÓÈÏ©mÈË°«º¯ººÓÈãÓº®
|¯ººÓÈãÓ©ËäÈ¯Ò©ºãÈÈ°ãËÒäÒÒÏÒ²º¹¯ËËãËÓÒ«°mº®°mÈäÒ
°

QQ QQ E
TT
==

°

det Q 1

°
 |¯ººÓÈãÓ©Ë äÈ¯Ò© Ò ºã}º ºÓÒ äº °ãÎÒ äÈ¯ÒÈäÒ
¹Ë¯Ë²ºÈººÓººº¯ºÓº¯äÒ¯ºmÈÓÓººÈÏÒ°È}¯ºä
°
 vº°mËÓÓ©ËÏÓÈËÓÒ«ãÒÓˮӺºº¹Ë¯Èº¯ÈÒäË˺º¯ººÓÈã
ÓäÈ¯Ò¯ÈmÓ©¹ºäºãËÒÓÒË
¯ºm˯Òä°¹¯ÈmËãÒmº°¹º°ãËÓ˺m˯ÎËÓÒ«
jÏ¯ÈmËÓ°mÈ
Af f
g
gg
=
λ
°ãËËº
fA f
g
g
g
T
T
T
=
λ
˯ËäÓºÎÒm
¹ºãËÓÓº ªÒ ¯ÈmËÓ°mÈ ¹ºãÒä °ººÓºËÓÒË
fAAf ff
g
gg
ggg
T
T
T

=
λ
2
 {
°Òãº¯ººÓÈãÓº°Ò
A
g
ÒäËËä

T
AA E
gg
=
È¹ººä
ff ff
gg gg
TT
=
λ
2
ÒÓÈ}ºÓË
λ
2
1
=
¹º°}ºã}°º°mËÓÓ©ËmË}º¯©
f
ÓËÓãËm©Ë
cÈÏËã
pm}ãÒºmº¹¯º°ˆ¯ÈÓ°ˆmº



|¯ˆººÓÈã Ó©ËäȈ¯Ò©mËm}ãÒºmºä¹¯º°ˆ¯ÈÓ°ˆmË
            
            
            
           cȰ°äºˆ¯Òä mÈ ¯ÈÏãÒÓ©² º¯ˆºÓº¯äÒ¯ºmÈÓÓ©² ­ÈÏÒ°È                                                              {e1 , e2 ,..., en }  Ò
{e1′ , e2′ ,..., en′ } mE n °äȈ¯ÒË®¹Ë¯Ë²ºÈ S ºˆ¹Ë¯mºº­ÈÏÒ°È}ºmˆº¯ºä‚º°}ºã }‚m
                                                                                                                               T
ªˆÒ²­ÈÏҰȲäȈ¯ÒÈ€¯ÈäÈËÒÓÒÓÈ«ˆºÒϰººˆÓº ËÓÒ« Γ                                                       e′
                                                                                                                      = S              Γ   e
                                                                                                                                               S °ãË
                                              T                                           T
‚ˈ ¯ÈmËÓ°ˆmº Ε = S                            Ε       S  ÒãÒ E = S                     S  º°}ºã }‚ äȈ¯ÒÈ ¹Ë¯Ë²ºÈ
                                                                                     −1           T
    S ÓËm©¯ºÎËÓÓÈ«ˆºº}ºÓȈËã ÓºÒäËËä S                                          = S          
           
                                                                                                            T
           {       ¯ÈÏm˯ӂˆº®                  Áº¯äË         ¯ÈmËÓ°ˆmº                   E = S              S           ¹¯ÒÓÒäÈˈ                   mÒ
          n
δ kl = ∑σ kiTσ il ;           k , l = [1, n] }ºˆº¯ºËã«ȰˆÓºº°ã‚È« n = 3 ­©ãº¹ºã‚ËÓºm¹
         i =1
           
           
           sȹºäÓÒ䈺°ºãȰӺº¹¯ËËãËÓÒ äȈ¯ÒÈ Q ‚ºmãˈmº¯« È«°º
                           T             −1
ºˆÓº ËÓÒ  Q = Q      ÓÈÏ©mÈˈ°«º¯ˆººÓÈã Óº®
      
      
|¯ˆººÓÈã Ó©ËäȈ¯Ò©º­ãÈÈ ˆ°ãË‚ ÒäÒÒÏÒ²º¹¯ËËãËÓÒ«°mº®°ˆmÈäÒ

                                     T                       T
                      °      Q       Q = Q Q                 = E 
                      
                    ° det Q = ±1 
                    
                    ° |¯ˆººÓÈã Ó©Ë äȈ¯Ò© Ò ˆºã }º ºÓÒ  亂ˆ °ã‚Î҈  äȈ¯ÒÈäÒ
                          ¹Ë¯Ë²ºÈºˆºÓººº¯ˆºÓº¯äÒ¯ºmÈÓÓºº­ÈÏÒ°È}¯‚ºä‚
                    
                    ° vº­°ˆmËÓÓ©ËÏÓÈËÓÒ«ãÒÓˮӺºº¹Ë¯Èˆº¯ÈÒäË Ëºº¯ˆººÓÈã 
                          ӂ äȈ¯Ò‚¯ÈmÓ©¹ºäº‚ã ËÒÓÒË
                    
                    
                ¯ºm˯Òä°¹¯ÈmËãÒmº°ˆ ¹º°ãËÓ˺‚ˆm˯ÎËÓÒ«
                
                jϯÈmËÓ°ˆmÈ A                                                                            A
                                                                                                        T        T                 T
                                                  f   g
                                                          =λ f      g
                                                                        °ãË‚ˈˆº f                g
                                                                                                                     =λ f          g
                                                                                                                                       Ë¯ËäÓºÎÒm
                                              g                                                                  g

                                                                                                  A        A
                                                                                              T         T                                      T
¹ºãËÓÓº ªˆÒ ¯ÈmËÓ°ˆmÈ ¹ºã‚Òä °ººˆÓº ËÓÒË                                          f   g
                                                                                                                      f   g
                                                                                                                              = λ2 f           g
                                                                                                                                                   f   g
                                                                                                                                                            {
                                                                                                        g        g

°Òズ¯ˆººÓÈã Óº°ˆÒ A                          ÒäËËä A            A       = E ȹºˆºä‚ f
                                                                   T                                                  T                            T
                                              g                     g        g                                        g
                                                                                                                          f    g
                                                                                                                                       = λ2 f      g
                                                                                                                                                       f     g
                                                                                                                                                                 

ÒÓÈ}ºÓË λ2 = 1 ¹º°}ºã }‚°º­°ˆmËÓÓ©ËmË}ˆº¯©fÓËӂãËm©Ë