Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 248 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
˺¯ËäÈ

zºº¯ÒÓÈÓ©®°ºãËãººªãËäËÓÈ
x
Ëm}ãÒºmÈ¹¯º°¯ÈÓ°mÈ
E
n
mÈÏÒ°Ë
{, ,..., }
gg g
n
12
äºÎË©¹¯Ë°ÈmãËÓmmÒË
xb
ggg
=
Γ
1

Ë
Γ
g
äÈ¯ÒÈ¯ÈäÈÈ°ºãË
b
xg
xg
xg
g
n
=
(, )
(, )
...
(, )
1
2

iº}ÈÏÈËã°mº
äÓºÎÒäºËȰÒ¯ÈmËÓ°mÈ
=
=
n
i
ii
gx
1
ξ
°}È㫯ӺÓÈ
k
g

kn= [, ]1
ºÈ¹ºã
Òä°Ò°Ëä¯ÈmÓËÓÒ®
],1[,),(),(
1
nkgxgg
kk
n
i
ii
==
=
ξ
º°ÓºmÓÈ«äÈ¯ÒÈ }ºº
¯º®˰äÈ¯ÒÈ¯ÈäÈº°}ºã}m°Òã ˺¯Ëä©ªÈäÈ¯ÒÈÓËm©
¯ºÎËÓÓÈ«¹¯Ò²ºÒä}Áº¯äãË
xb
ggg
=
Γ
1

˺¯ËäÈº}ÈÏÈÓÈ
vã˰mÒË

{º¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°Ë
},...,,{
21
n
eee
Ëm}ãÒºmÈ¹¯º°¯ÈÓ°mÈ
E
n
ã« ãºº ªãËäËÓÈ
n
n
i
ii
Eex =
=
1
ξ
ÒäË ä˰º ¯ÈmËÓ°mÈ
ξ
ii
xe i n
==
(, ), [,]1

iº}ÈÏÈËã°mº
iã«º¯ºÓº¯äÒ¯ºmÈÓÓººÈÏÒ°È
{, ,..., }
ee e
n
12
äÈ¯ÒÈ¯ÈäÈËÒÓÒÓÈ«¹ºªºä
ÒÏ˺¯Ëä©¹ºãÈËäº
ξ
ii
xe i n
==
(, ), [,]1

vã˰mÒËº}ÈÏÈÓº
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



 ‘˺¯ËäÈ               zºº¯ÒÓȈө®°ˆºã­Ëã ­ººªãËäËӈÈxËm}ãÒºmȹ¯º°ˆ¯ÈÓ°ˆmÈ E n 
                m­ÈÏÒ°Ë {g1 , g 2 ,..., g n } äºÎˈ­©ˆ ¹¯Ë°ˆÈmãËÓmmÒË
                        
                                                                                           −1
                                                                          x   g
                                                                                  = Γ      g
                                                                                                b        g
                                                                                                             
                                                                                      
                                                                                                                  ( x , g1 )
                                                                                                                  ( x, g2 )
                        Ë Γ            äȈ¯ÒÈ€¯ÈäÈȰˆºã­Ë b                                     =                 
                                      g                                                                  g           ...
                                                                                                                  ( x, gn )


  iº}ÈÏȈËã°ˆmº
      
      
                                                                    n
          äÓºÎÒ亭ËȰˆÒ¯ÈmËÓ°ˆmÈ x =                         ∑ξ i g i °}È㫯ӺÓÈ g k  k = [1, n] ‘ºÈ¹ºã‚
                                                                   i =1
                                                    n
          Òä°Ò°ˆËä‚‚¯ÈmÓËÓÒ®                   ∑ξ i ( g i , g k ) = ( x, g k ) ,       k = [1, n] º°ÓºmÓÈ«äȈ¯ÒÈ}ºˆº
                                                   i =1
          ¯º®˰ˆ äȈ¯ÒÈ€¯Èäȁº°}ºã }‚m°Òよ˺¯Ë䩪ˆÈäȈ¯ÒÈÓËm©
                                                                                      −1
          ¯ºÎËÓÓÈ«¹¯Ò²ºÒä}Áº¯ä‚ãË x
                                                                          g
                                                                              = Γ     g
                                                                                           b    g
                                                                                                    
          
          
     ‘˺¯ËäȺ}ÈÏÈÓÈ
              
              
              
              
 vã˰ˆmÒË             {º¯ˆºÓº¯äÒ¯ºmÈÓÓºä­ÈÏÒ°Ë {e1, e 2 ,..., e n } Ëm}ãÒºmȹ¯º°ˆ¯ÈÓ°ˆmÈ E n 
 
                                                                                  n
                        ã« ã ­ºº ªãËäËӈÈ                          x = ∑ ξ i ei ∈ E n  ÒäË ˆ ä˰ˆº ¯ÈmËÓ°ˆmÈ
                                                                              i =1
                ξi = ( x , ei ) , i = [1, n] 


  iº}ÈÏȈËã°ˆmº
      
      
      i㫺¯ˆºÓº¯äÒ¯ºmÈÓÓºº­ÈÏÒ°È {e1 , e2 ,..., en } äȈ¯ÒÈ€¯ÈäÈËÒÓÒÓÈ«¹ºªˆºä‚
        Òψ˺¯Ë䩹ºã‚ÈË䈺 ξi = ( x , ei ) , i = [1, n] 
        
        
     vã˰ˆmÒ˺}ÈÏÈÓº