Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 246 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
Ë
x
g
Ò
y
g
 }ºº¯ÒÓÈÓ©Ë °ºã© ªãËäËÓºm
x
Ò
y
m ÈÏÒ°Ë
{, ,..., }gg g
n
12

|ËmÒÓººªÈÁº¯äãÈ°ºãȰË°«°¹Ò¹
~ÈäËÒäÓÈ}ºÓËºmº¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°Ë
Γ
e
E
=
ÈÁº¯äãÈã«
°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«¹¯ÒÓÒäÈËmÒ
(,)
T
xy x y
gg
ii
i
n
==
=
ξ
η
1

˺¯ËäÈ

iã«ÈÏÒ°Óº®äÈ¯Ò©¯ÈäÈ
Γ
g
mãºäÈÏÒ°Ë
det
Γ
g
> 0

iº}ÈÏÈËã°mº
jÏ º¹¯ËËãËÓÒ«  °ãËË º °}È㫯ӺË ¹¯ºÒÏmË ËÓÒË ˰ ÒãÒÓˮө®
°ÒääË¯ÒÓ©® ÁÓ}ÒºÓÈã ¹ºªºä ¹¯Ò ¹Ë¯Ë²ºË º ÈÏÒ°È
{, ,..., }gg g
n
12
}
ÈÏÒ°
{, ,..., }
′′ ′
gg g
n
12
°äÈ¯ÒË® ¹Ë¯Ë²ºÈ
S
¹º ˺¯ËäËã«äÈ¯Ò©
¯ÈäÈÒäËä˰º¯ÈmËÓ°mÈ
ΓΓ ΓΓ
′′
==
gg gg
SS S
T
; det det (det )
2
Ë
det S 0

º}È°ãËËºÏÓÈËÓÒË
)det(sgn
g
ñ
ÒÓmȯÒÈÓÓºº˰ÓËÒÏäËÓ«Ë°«
¹¯Ò ÏÈäËÓË ÈÏÒ°È sÈ}ºÓË ¹¯ÒÓ«m mº mÓÒäÈÓÒË º m º¯ºÓº¯äÒ¯ºmÈÓÓºä
ÈÏÒ°Ë
det
Γ
e
= 1
¹¯Ò²ºÒä}ÏÈ}ãËÓÒºmãºäÈÏÒ°Ë
det
Γ
g
> 0

˺¯ËäÈº}ÈÏÈÓÈ
vã˰mÒË

vÒ°ËäÈ ªãËäËÓºm
{ , ,..., }ff f
k
12
m
E
n
ãÒÓˮӺ ÓËÏÈmÒ°ÒäÈ ºÈ Ò
ºã}º ºÈ È º¹¯Ë ËãÒËã äÈ¯Ò© ¯ÈäÈ ªº® °Ò°Ëä© ¹º
ãºÎÒËãËÓ
iº}ÈÏÈËã°mº
p°ãÒ ªãËäËÓ©
{ , ,..., }
ff f
k
12
ãÒÓˮӺ ÏÈmÒ°Òä© º º¹¯ËËãÒËã Ò² äÈ¯Ò©
¯ÈäÈ¯ÈmËÓÓãiË®°mÒËãÓº¹°°˰mÓË¯ÈmÓ©ËÓãºÓºm¯Ë
äËÓÓºÒ°ãÈ
λλ λ
12
, ,...,
k
È}ÒËº
λλ λ
11 22
ff fo
kk
+++=...

äÓºÎÒm ªº ¯ÈmËÓ°mº °}È㫯Ӻ °ãËmÈ ÓÈ
fi k
i
;[,]
∀=
1
 ¹ºãÒä
],1[;0),(...),(),(
2211
kiffffff
kikii
==+++
λλλ
 ºÈ °ºãȰӺ ¹¯ÈmÒãÈä
Ë®°mÒ® ° äÈ¯Ò ÈäÒ °ä ¹ °ãËË º ãÒÓË®ÓÈ« }ºäÒÓÈÒ« °ºãºm
äÈ¯Ò©¯ÈäÈÒäËÈ«}ºªÁÁÒÒËÓÈäÒÒ°ãÈ
λλ λ
12
, ,...,
k
Ë¯ÈmÓÈÓ
ãËmºä°ºãÒ°ã˺mÈËãÓºË¯ÈmËÓÓãº¹¯ËËãÒËãäÈ¯Ò©¯ÈäÈ
°äãËääÒ˺¯Ëä
v ¯º® °º¯ºÓ© ˰ãÒ ªãËäËÓ©
{ , ,..., }ff f
k
12
ãÒÓˮӺ ÓËÏÈmÒ°Òä© º ºÓÒ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



Ë x             Ò       y         }ºº¯ÒÓȈөË °ˆºã­© ªãËäËӈºm x Ò y m ­ÈÏÒ°Ë {g1 , g 2 ,..., g n } 
              g                   g
|ËmÒÓºˆºªˆÈÁº¯ä‚ãȰºãȰ‚ˈ°«°¹Ò¹

              ~ÈäˈÒäÓÈ}ºÓˈºmº¯ˆºÓº¯äÒ¯ºmÈÓÓºä­ÈÏÒ°Ë Γ                                                        e
                                                                                                                             = E ÈÁº¯ä‚ãÈã«
                                                                                                                  n
                                                                                                               = ∑ ξ i η i 
                                                                                                  T
°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«¹¯ÒÓÒäÈˈmÒ ( x , y ) = x                                              g
                                                                                                       y   g
                                                                                                                 i =1


 ‘˺¯ËäÈ                    iã«­ÈÏÒ°Óº®äȈ¯Ò©€¯ÈäÈ Γ                                        mã ­ºä­ÈÏÒ°Ë det Γ                 > 0 
                                                                                              g                                      g
 

  iº}ÈÏȈËã°ˆmº
     
      jÏ º¹¯ËËãËÓÒ«  °ãË‚ˈ ˆº °}È㫯ӺË ¹¯ºÒÏmËËÓÒË ˰ˆ  ­ÒãÒÓˮө®
      °Òääˈ¯ÒÓ©® Á‚Ó}ÒºÓÈã ¹ºªˆºä‚ ¹¯Ò ¹Ë¯Ë²ºË ºˆ ­ÈÏÒ°È {g1 , g 2 ,..., g n }  }
          ­ÈÏÒ°‚ {g1′ , g 2′ ,..., g n′ }  ° äȈ¯ÒË® ¹Ë¯Ë²ºÈ                                   S  ¹º ˆËº¯ËäË  ã« äȈ¯Ò©
          €¯ÈäÈÒäË ˆä˰ˆº¯ÈmËÓ°ˆmÈ
          
                                             T
                         Γ       g′
                                      = S        Γ   g
                                                         S    ; det Γ            g′
                                                                                      = det Γ              g
                                                                                                               (det S ) 2 Ë det S ≠ 0 
                                                                                      
          ºˆ}‚ȰãË‚ˈˆºÏÓÈËÓÒË sgn ( det ñ                                           ) ÒÓmȯÒÈӈӺˆº˰ˆ ÓËÒÏäËӫˈ°«
                                                                                          g
          ¹¯Ò ÏÈäËÓË ­ÈÏÒ°È sÈ}ºÓË ¹¯ÒÓ«m mº mÓÒäÈÓÒË ˆº m º¯ˆºÓº¯äÒ¯ºmÈÓÓºä
          ­ÈÏÒ°Ë det Γ                      = 1 ¹¯Ò²ºÒä}ÏÈ}ã ËÓÒ ˆºmã ­ºä­ÈÏÒ°Ë det Γ                                            > 0 
                                         e                                                                                                 g
         
     ‘˺¯ËäȺ}ÈÏÈÓÈ
          
          
 vã˰ˆmÒË                  vÒ°ˆËäÈ ªãËäËӈºm { f 1 , f 2 ,..., f k }  m E n  ãÒÓˮӺ ÓËÏÈmÒ°ÒäÈ ˆºÈ Ò
 
                             ˆºã }º ˆºÈ }ºÈ º¹¯ËËã҈Ëã  äȈ¯Ò© €¯ÈäÈ ªˆº® °Ò°ˆËä©  ¹º
                             ãºÎ҈ËãËÓ

  iº}ÈÏȈËã°ˆmº
   
       p°ãÒ ªãËäËӈ© { f 1 , f 2 ,..., f k }  ãÒÓˮӺ ÏÈmÒ°Òä© ˆº º¹¯ËËã҈Ëã  Ò² äȈ¯Ò©
       €¯ÈäȯÈmËÓӂã iË®°ˆm҈Ëã Óº¹‚°ˆ °‚Ë°ˆm‚ ˆÓ˯ÈmÓ©Ëӂã ºÓºm¯Ë
       äËÓÓºÒ°ãÈ λ1 , λ2 ,..., λk ˆÈ}Òˈº λ1 f 1 + λ2 f 2 +...+ λk f k = o 
                                                          
       äÓºÎÒm ªˆº ¯ÈmËÓ°ˆmº °}È㫯Ӻ °ãËmÈ ÓÈ f i ; ∀i = [1, k ]  ¹ºã‚Òä
             λ1 ( f i , f1 ) + λ2 ( f i , f 2 ) + ... + λk ( f i , f k ) = 0 ;        ∀i = [1, k ]  ‘ºÈ °ºãȰӺ ¹¯ÈmÒãÈä
          Ë®°ˆmÒ® ° äȈ¯ÒÈäÒ °ä ¹  °ãË‚ˈ ˆº ãÒÓË®ÓÈ« }ºä­ÒÓÈÒ« °ˆºã­ºm
          äȈ¯Ò©€¯ÈäÈÒäË È«}ºªÁÁÒÒËӈÈäÒÒ°ãÈ λ1 , λ2 ,..., λk ­‚ˈ¯ÈmÓÈӂ
          ãËmºä‚°ˆºã­‚Ò°ã˺mȈËã Óº­‚ˈ¯ÈmËÓӂã º¹¯ËËã҈Ëã äȈ¯Ò©€¯ÈäÈ
           °äãËää‚҈˺¯Ëä‚ 
          
          v ¯‚º® °ˆº¯ºÓ© ˰ãÒ ªãËäËӈ© { f 1 , f 2 ,..., f k }  ãÒÓˮӺ ÓËÏÈmÒ°Òä© ˆº ºÓÒ