Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 237 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
¹Ë¯Ëmº«Ë® ¹ãº°}º°
z
=
1
°Èäm°Ë«mººËºmº¯« ÓËmºÏäºÎÓº ¹º
°}ºã}˺äÈ¯ÒÈÒäËËmÒ
00
010
00
p
p

{ ªºä°ãÈË ã« ¹º°ËÈ ¯ÈÓÈ Ò °ÒÓÈ¯©äºÎÓº Ò°¹ºãϺmÈäÈ¯Ò
¹Ë¯Ë²ºÈ
101
010
101
=S
 }ºº¯È« ²º« Ò ÓË º˰¹ËÒmÈË m©¹ºãÓËÓÒË
°ãºmÒ«¹Ë¯Ë²ºÈ¹ãº°}º°Ò
z = 1
°È亮m°Ë«Óº}È}m°«}È«ãÒÓË®ÓÈ«ÏÈ
äËÓÈ}ºº¯ÒÓÈ°º²¯ÈÓ«Ë¯ÈÓÒ°ÒÓÈ¯iË®°mÒËãÓº
.
200
010
002
101
010
101
00
010
00
101
010
101
T
p
p
p
p
SS
gg
=
=Ψ=Ψ
°
iã«ãÒÓÒ®mº¯ºº¹º¯«}ÈÓÈ¹ãº°}º°Ò°˰mÒ¯ÒËº¯ººÓÈãÓ©Ë
ÒÓmȯÒÈÓ© Óȹ¯Òä˯ ÒÓmȯÒÈÓÈäÒ «mã«°« Ò°ãÈ
IAC
1
=+
Ò
I
AB
BC
2
= det
iº}ÈÎÒË°¹¯ÈmËãÒmº°ªººm˯ÎËÓÒ«°È亰º«Ëã
Óº
°
v²ËäÈ}ãȰ°ÒÁÒ}ÈÒÒÈÓÈãºÒÓÈ«¯È°°äº¯ËÓÓº®äºÎË©¹º°¯ºËÓÈÒ
ã«¹ºm˯²Óº°Ë®mº¯ºº¹º¯«}Èm¹¯º°¯ÈÓ°mË
w}°¯ËäÈãÓ©Ë°mº®°mÈ}mȯÈÒÓ©²ÁÓ}ÒºÓÈãºm
jÏ ˺¯Ëä©  °ãËË °˰mºmÈÓÒË m
n
Λ
ÈÏÒ°È m }ºº¯ºä }mȯÈÒÓ©®
ÁÓ}ÒºÓÈã
)(
x
ÒäËË ÒȺÓÈãÓ©®  iº¹°Òä º È}º® ÈÏÒ°
},...,,{
21
n
ggg
¹º°¯ºËÓÈ}º
)(
x
=
=
n
i
ii
1
2
ξ
λ
Ò
nn
λλλλ
121
...
ºÈÒäËËä˰º
˺¯ËäÈ
iã«}mȯÈÒÓººÁÓ}ÒºÓÈãÈ
)(x
m
n
Λ
°¹¯ÈmËãÒm©°ººÓºË
ÓÒ«
)(min
1
x
n
x Λ
=
λ
Ò
)(max x
n
x
n
Λ
=
λ

¹¯Ò °ãºmÒÒ º }ºä¹ºÓËÓ©
x
ºmãËmº¯«°ãºmÒ
1
1
2
=
=
n
i
i
ξ
cÈÏËã 
sËãÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



                   ¹Ë¯Ëmº«Ë® ¹ãº°}º°ˆ  z = 1  °Èä‚ m °Ë­« mºº­Ë ºmº¯« ÓËmºÏäºÎÓº ¹º
                                                                               0        0 −p
                   °}ºã }‚˺äȈ¯ÒÈÒäËˈmÒ                           0           1        0 
                                                                           −p           0        0
           
                   { ªˆºä °ã‚ÈË ã« ¹º°ˈÈ ¯ÈÓÈ Ò °ÒÓȈ‚¯© äºÎÓº Ò°¹ºã ϺmȈ  äȈ¯Ò‚
                                                    1    0     1
                   ¹Ë¯Ë²ºÈ           S =0  }ºˆº¯È« ²ºˆ« Ò ÓË º­Ë°¹ËÒmÈˈ m©¹ºãÓËÓÒË
                                                   0     1
                                          1       −1     0
                   ‚°ãºmÒ«¹Ë¯Ë²ºÈ¹ãº°}º°ˆÒ z = 1 °È亮m°Ë­«Óº}È}m°«}È«ãÒÓË®ÓÈ«ÏÈ
                   äËÓÈ}ºº¯ÒÓȈ°º²¯Èӫˈ¯ÈÓÒ°ÒÓȈ‚¯‚iË®°ˆm҈Ëã Óº
                   
                                                        1          0    −1         0        0 −p             1     0      1        2p          0          0
                               T
               Ψ   g′
                        = S        Ψ     g
                                             S = 0                 1      0      0          1        0  0          1      0 =         0        1   0 .
                                                 1                 0      1     −p          0        0 −1          0      1           0        0 −2p
                                                  
           
           °iã«ãÒÓÒ®mˆº¯ºº¹º¯«}ÈÓȹ㺰}º°ˆÒ°‚Ë°ˆm‚ ˆÒ¯‚Ò˺¯ˆººÓÈã Ó©Ë
                ÒÓmȯÒÈӈ© Óȹ¯Òä˯ ÒÓmȯÒÈӈÈäÒ «mã« ˆ°« Ò°ãÈ I 1 = A + C  Ò
                                   A B
                   I 2 = det           iº}ÈÎ҈˰¹¯ÈmËãÒmº°ˆ ªˆºº‚ˆm˯ÎËÓÒ«°È亰ˆº«ˆËã 
                                   B C
           Óº
      
      °v²ËäÈ}ãȰ°ÒÁÒ}ÈÒÒÈÓÈãºÒÓÈ«¯È°°äºˆ¯ËÓÓº®äºÎˈ­©ˆ ¹º°ˆ¯ºËÓÈÒ
           㫹ºm˯²Óº°ˆË®mˆº¯ºº¹º¯«}Èm¹¯º°ˆ¯ÈÓ°ˆmË
      
      
      
      
w}°ˆ¯ËäÈã ө˰mº®°ˆmÈ}mȯȈÒÓ©²Á‚Ó}ÒºÓÈãºm
      
      
      
     jÏ ˆËº¯Ëä©  °ãË‚ˈ °‚Ë°ˆmºmÈÓÒË m Λn  ­ÈÏÒ°È m }ºˆº¯ºä }mȯȈÒÓ©®
Á‚Ó}ÒºÓÈã  (x )  ÒäËˈ ÒȺÓÈã Ó©® mÒ iº¹‚°ˆÒä ˆº ˆÈ}º® ­ÈÏÒ° {g1′ , g 2′ ,..., g n′ } 
                                              n
¹º°ˆ¯ºËÓˆÈ}ˆº  (x ) =                  ∑ λiξ i′2 Ò λ1 ≤ λ2 ≤ ... ≤ λn −1 ≤ λn ‘ºÈÒäËˈä˰ˆº
                                             i =1
           
    ‘˺¯ËäÈ        iã«}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈ  (x ) m Λn °¹¯ÈmËãÒm©°ººˆÓºË
                           ÓÒ« λ1 = min  ( x )  Ò λn = max  ( x )  ¹¯Ò ‚°ãºmÒÒ ˆº }ºä¹ºÓËӈ© x
                                             x∈Λn                          x∈Λn
                                                                          n
                           ‚ºmãˈmº¯« ˆ‚°ãºmÒ                         ∑
                                                                        ξ i′ 2    = 1 
                                                                        i =1