Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 288 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
jÏ ¯ÈmËÓ°mÈ
SSE
T
Φ
=
°ãËË º
SS=
()
T
Φ
1
 ºÈ Ò°
¹ºãÏ«¹¯ÈmÒãÈº¯ÈËÓÒ«Ò¯ÈÓ°¹ºÓÒ¯ºmÈÓÒ«¹¯ºÒÏmË ËÓÒ«äÈ¯Ò¹Ë¯Ë°ÈÓºmº
Óº° º¯ÈËÓÒ« Ò ¯ÈÓ°¹ºÓÒ¯ºmÈÓÒ« È È}ÎË °ÒääË¯ÒÓº° Ò ÓËm©¯ºÎËÓÓº°
äÈ¯Ò©
Φ
ÒäËËä
ΨΨ ΦΨ Φ Ψ
ΦΨ ΦΨ
∗−
−−
== = =
==
SSS S S S
SSSS
TT
T
T
T
T
(( ) ) ( ) ( )
() ( ).
()
111
1
1
11
ºãËÓÓºË¯ÈmËÓ°mººÏÓÈÈËºäÈ¯ÒÈ
Ψ
äºÎË¯È°°äÈ¯ÒmÈ°«}È}
¯ËÏãÈ¹¯Ëº¯ÈϺmÈÓÒ«äÈ¯Ò©ãÒÓˮӺºº¹Ë¯Èº¯È
ΦΨ
1
¹¯ÒÏÈäËÓËÈÏÒ°È
° äÈ¯ÒË® ¹Ë¯Ë²ºÈ
S
 º°}ºã} °º°mËÓÓ©Ë ÏÓÈËÓÒ« ãÒÓˮӺº º¹Ë¯Èº¯È ÓË
ÏÈmÒ°« º m©º¯È ÈÏÒ°È º ¯ËËÓÒË ÏÈÈÒ °mºÒ°« } º¹¯ËËãËÓÒ °º°mËÓÓ©²
ÏÓÈËÓÒ®º¹Ë¯Èº¯ÈÒäË˺äÈ¯Ò
ΦΨ
1

vº°mËÓÓ©ËmË}º¯© Ò°º°mËÓÓ©Ë ÏÓÈËÓÒ«ªººº¹Ë¯Èº¯È ÓȲº«°«°º
ãȰӺ  ÒÏ °Ò°Ëä© ãÒÓˮө² ¯ÈmÓËÓÒ®
ff
λ
=Ψ
)(
1
 }ºº¯ºË äºÎÓº
¹¯Ëº¯ÈϺmÈ}mÒ
of =Ψ
)(
λ
 °ãºmÒË °˰mºmÈÓÒ« ÓËÓãËm©²
°ºãºm
f

det ( )
ΨΦ
−=
λ
0
˰ÈãË¯ÈÒ˰}ºË¯ÈmÓËÓÒËº Óº°ÒËãÓº
λ
}º¯ÓÒ}ºº¯ººÒ«mã«°«Ò°}ºä©äÒ
}ºªÁÁÒÒËÓÈäÒÒȺÓÈãÓºº¹¯Ë°ÈmãËÓÒ«}mȯÈÒÓººÁÓ}ÒºÓÈãÈ
Ψ
()
x

¯ºÒãã°¯Ò¯Ëä ¹¯ÒäËÓËÓÒË ÈÓÓºº äËºÈ ã« ÓȲºÎËÓÒ« ÒȺÓÈãÓºº
È}mȯÈÒÓ©²Áº¯ämÏÈÈË
jäËËä
Φ
=
11
13
Ò
Ψ
=
48
86
º˰ã«º¹¯ËËãËÓÒ«}ºªÁÁÒÒËÓºm
ÒȺÓÈãÓºº ¹¯Ë°ÈmãËÓÒ« }mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ
Ψ
()
x
Ó˺²ºÒäº ¯ËÒ
¯ÈmÓËÓÒË
det ( )
48
83
11
13
0
−=
λ
ÒãÒ
det
48
833
0
−−
−−
=
λλ
λλ

º°}ºã} ÈÓÓºË ¯ÈmÓËÓÒË ÒäËË mÈ }º¯Ó«
λ
1
5
=
Ò
λ
2
4
=−
 º Ò°}ºä©®
ÒȺÓÈãÓ©® ã«
Ψ
()
x
Ë
Ψ
()
x
2
2
2
1
45
ξ
ξ
=
mºm¯Ëä«}È}ºËmÒÓº º
Φ
()
x
2
2
2
1
ξ
ξ
+
=

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                           T                                                                 T
        jÏ ¯ÈmËÓ°ˆmÈ S   Φ S = E  °ãË‚ˈ ˆº S = ( S       Φ ) −1  ‘ºÈ Ò°
¹ºã ς«¹¯ÈmÒãȺ­¯ÈËÓÒ«Òˆ¯ÈÓ°¹ºÓÒ¯ºmÈÓÒ«¹¯ºÒÏmËËÓÒ«äȈ¯Ò¹Ë¯Ë°ˆÈÓºmº
Óº°ˆ  º­¯ÈËÓÒ« Ò ˆ¯ÈÓ°¹ºÓÒ¯ºmÈÓÒ« È ˆÈ}ÎË °Òääˈ¯ÒÓº°ˆ  Ò ÓËm©¯ºÎËÓÓº°ˆ 
äȈ¯Ò© Φ             ÒäËËä
      
      
         Ψ∗ = S                                          Φ ) −1 ) T Ψ             S = ( ( Φ ) −1 ( S
                          T                          T                                                           T −1
                               Ψ     S = (( S                                                                     )     )T   Ψ     S =
                                                                                                                                          
                          −1         T −1                         −1          −1
                 = S           ( Φ     )       Ψ    S = S              ( Φ         Ψ ) S          .
            
            
            ºã‚ËÓӺ˯ÈmËÓ°ˆmººÏÓÈÈˈˆºäȈ¯ÒÈ Ψ ∗ äºÎˈ¯È°°äȈ¯ÒmȈ °«}È}
                                                                                                       −1
¯Ëς㠈Ȉ¹¯Ëº­¯ÈϺmÈÓÒ«äȈ¯Ò©ãÒÓˮӺºº¹Ë¯Èˆº¯È Φ                                                     Ψ ¹¯ÒÏÈäËÓË­ÈÏÒ°È
° äȈ¯ÒË® ¹Ë¯Ë²ºÈ S  º°}ºã }‚ °º­°ˆmËÓÓ©Ë ÏÓÈËÓÒ« ãÒÓˮӺº º¹Ë¯Èˆº¯È ÓË
ÏÈmÒ°«ˆ ºˆ m©­º¯È ­ÈÏÒ°È ˆº ¯Ë ËÓÒË ÏÈÈÒ °mº҈°« } º¹¯ËËãËÓÒ  °º­°ˆmËÓÓ©²
                                                                             −1
ÏÓÈËÓÒ®º¹Ë¯Èˆº¯ÈÒäË ËºäȈ¯Ò‚ Φ       Ψ 
       
       vº­°ˆmËÓÓ©Ë mË}ˆº¯© Ò °º­°ˆmËÓÓ©Ë ÏÓÈËÓÒ« ªˆºº º¹Ë¯Èˆº¯È ÓȲº«ˆ°« °º
                                                                                        −1
ãȰӺ  ÒÏ °Ò°ˆËä© ãÒÓˮө² ‚¯ÈmÓËÓÒ® (                                           Ψ ) f = λ f  }ºˆº¯ºË äºÎÓº
¹¯Ëº­¯ÈϺmȈ  } mÒ‚ ( Ψ − λ  ) f = o  °ãºmÒË °‚Ë°ˆmºmÈÓÒ« ÓËӂãËm©²

°ˆºã­ºm          f 
                                                              det ( Ψ − λ Φ ) = 0 
        
˰ˆ ÈãË­¯ÈÒ˰}ºË‚¯ÈmÓËÓÒ˺ˆÓº°ÒˆËã Óº λ}º¯ÓÒ}ºˆº¯ººÒ«mã« ˆ°«Ò°}ºä©äÒ
}ºªÁÁÒÒËӈÈäÒÒȺÓÈã Óºº¹¯Ë°ˆÈmãËÓÒ«}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈΨ ( x ) 
        
        
        ¯ºÒãã °ˆ¯Ò¯‚Ëä ¹¯ÒäËÓËÓÒË ÈÓÓºº äˈºÈ ã« ÓȲºÎËÓÒ« ÒȺÓÈã Óºº
mÒÈ}mȯȈÒÓ©²Áº¯ämÏÈÈË
        
                      1 1             4 8
            jäËËä Φ =     Ò Ψ =          ˆº˰ˆ 㫺¹¯ËËãËÓÒ«}ºªÁÁÒÒËӈºm
                      1 3             8 6
ÒȺÓÈã Óºº ¹¯Ë°ˆÈmãËÓÒ« }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ Ψ ( x )  Ó˺­²ºÒäº ¯Ë ҈ 
‚¯ÈmÓËÓÒË
                                           4 8             1 1                                 4−λ          8−λ
                                   det (            −λ              ) = 0 ÒãÒ det                            = 0 
                                           8 3             1 3                                 8−λ          3 − 3λ
            
            º°}ºã }‚ ÈÓÓºË ‚¯ÈmÓËÓÒË ÒäËˈ mÈ }º¯Ó« λ1 = 5  Ò λ2 = −4  ˆº Ò°}ºä©®
ÒȺÓÈã Ó©® mÒ ã« Ψ ( x )  ­‚ˈ Ψ ( x ) = 5ξ1′ 2 − 4ξ 2′ 2  m ˆº m¯Ëä« }È} ºËmÒÓº ˆº
Φ ( x ) = ξ1′2 + ξ 2′2