Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 287 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


¯Ò}ãÈÓ©ËÏÈÈÒãÒÓˮӺ®ÈãË¯©
lÈ¯ÒÈ }mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ
Ψ
()x
m ªºä ÈÏÒ°Ë
Ψ
=
e
422
22 3
ÒäËË°º°mËÓÓ©Ë Ò°ãÈ
λ
1
5
=
Ò
λ
2
4
=−
ÈÈ}ÎËº¯ºÓº¯äÒ¯ºmÈÓÓ©Ë°º°mËÓ
Ó©Ë mË}º¯©
f
e
1
22
3
1
3
=
Ò
f
e
2
1
3
22
3
=
 }ºº¯©Ë ¹¯ÒäËä ÏÈ Óºm©® ÈÏÒ°
},{
21
ee

°
 lÈ¯ÒÈ ¹Ë¯Ë²ºÈ º º¯ºÓº¯äÒ¯ºmÈÓÓºº ÈÏÒ°È
},{
21
ee
} º¯ºÓº¯äÒ¯ºmÈÓÓºä
ÈÏÒ°
},{
21
ee
 m }ºº¯ºä
Φ
()x
2
2
2
1
ξ
ξ
+
=
Ò
Ψ
()x
2
2
2
1
45
ξ
ξ
=
 º¯ººÓÈãÓÈ« Ò
ÒäËËmÒ
S
=
22
3
1
3
1
3
22
3

|}È¹ºãÈËäº
+
=
+
=
212
211
3
22
3
1
3
1
3
22
ξ
ξ
ξ
ξ
ξ
Òº}ºÓÈËãÓº
+=
+=
212
211
3
1
2
3
22
ξ
ξ
ξ
ξ
ξ

p°ãÒmÏÈÈË ºÓºm¯ËäËÓÓºº ¹¯ÒmËËÓÒ« ¹È¯© }mȯÈÒÓ©² ÁÓ}ÒºÓÈãºm
ºÒÓ ÒÏ }ºº¯©² ¹ºãºÎÒËãÓº º¹¯ËËãËÓÓ©® °ººmË°mËÓÓº } ÒȺÓÈãÓºä Ò
}ÈÓºÓÒ˰}ºä  ¯ËË°« ÓÈ®Ò ãÒ ªº È ÓË Áº¯äã© ÏÈäËÓ©
¹Ë¯ËäËÓÓ©²ºmºÏäºÎÓºÒ°¹ºãϺmÈÓÒËºãËË¹¯º°º®°²Ëä©¯È°Ëºm
iº¹°Òä º ¹ºãºÎÒËãÓº º¹¯ËËãËÓÓ©® }mȯÈÒÓ©® ÁÓ}ÒºÓÈã
Φ
()
x
¹¯ÒmËËÓ ¹¯Ò ¹ºäºÒ äÈ¯Ò© ¹Ë¯Ë²ºÈ
S
}}ÈÓºÓÒ˰}ºä   º ˰
SSE
T
Φ
=
 º°ãË ºº ÎË ¹¯Ëº¯ÈϺmÈÓÒ« äÈ¯ÒÈ }mȯÈÒÓºº
ÁÓ}ÒºÓÈãÈ
Ψ
()x
ËÒäËmÒ
ΨΨ
=
SS
T

ãȰӺ ˺¯ËäË  m º¯ºÓº¯äÒ¯ºmÈÓÓºä ÈÏÒ°Ë ã« ¹º°¯ºËÓÒ« ÒȺ
ÓÈãÓºº È }mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ
Ψ
()x
º°ÈºÓº ÓÈ®Ò °º°mËÓÓ©Ë Ò°ãÈ
°È亰º¹¯«ÎËÓÓºº º¹Ë¯Èº¯È äÈ¯ÒÈ }ºº¯ºº ˰
Ψ
 sÈ®Ëä m©¯ÈÎËÓÒË ã«
ªº®äÈ¯Ò©Ò©mÈËË°m«ÏäËÎäÈ¯ÒÈäÒ
Φ
Ò
S

cÈÏËã
¯Ò}ãÈÓ©ËÏÈÈÒãÒÓˮӺ®ÈãË­¯©



                                                                                                                                      4       2 2
            lȈ¯ÒÈ }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ Ψ ( x )  m ªˆºä ­ÈÏÒ°Ë Ψ                                                   =                 
                                                                                                                           e′       2 2        −3
            ÒäËˈ°º­°ˆmËÓÓ©ËÒ°ãÈ λ1 = 5 Ò λ2 = −4 ȈÈ}Î˺¯ˆºÓº¯äÒ¯ºmÈÓө˰º­°ˆmËÓ

                                                  2 2                                     1
                                                                                      −
                                                   3                                      3
            Ó©Ë mË}ˆº¯©           f1   e′
                                              =             Ò    f2    e′
                                                                              =                }ºˆº¯©Ë ¹¯ÒäËä ÏÈ Óºm©® ­ÈÏÒ°
                                                   1                                  2 2
                                                   3                                   3
      {e1′′, e ′2′ } 
      
° lȈ¯ÒÈ ¹Ë¯Ë²ºÈ ºˆ º¯ˆºÓº¯äÒ¯ºmÈÓÓºº ­ÈÏÒ°È {e1′ , e ′2 }  } º¯ˆºÓº¯äÒ¯ºmÈÓÓºä‚
            ­ÈÏÒ°‚ {e1′′, e ′2′ }  m }ºˆº¯ºä Φ ( x ) = ξ1′′2 + ξ 2′′2  Ò Ψ ( x ) = 5ξ1′′ 2 − 4ξ 2′′ 2  º¯ˆººÓÈã ÓÈ« Ò
            ÒäËˈmÒ
                                                                              2 2   1
                                                                                  −
                                                                               3    3
                                                                  S =                            
                                                                                  1        2 2
                                                                                  3         3
            
                                           2 2          1                                2 2
                                   ξ1′′ =      ξ1′ +     ξ 2′                  
                                                                                   ξ1′′ =     ξ1 + 2ξ 2
            |ˆ}‚ȹºã‚ÈË䈺           3           3      Òº}ºÓȈËã Óº           3            
                                   ξ ′′ = − 1ξ ′ + 2 2 ξ ′                      ξ 2′′ = − 1ξ1 + ξ 2
                                   
                                      2
                                               3
                                                  1
                                                       3
                                                              2                             3
            
            
            
       p°ãÒ m ÏÈÈË ºÓºm¯ËäËÓÓºº ¹¯ÒmËËÓÒ« ¹È¯© }mȯȈÒÓ©² Á‚Ó}ÒºÓÈãºm
ºÒÓ ÒÏ }ºˆº¯©² ¹ºãºÎ҈Ëã Óº º¹¯ËËãËÓÓ©® °ººˆmˈ°ˆmËÓÓº } ÒȺÓÈã Óºä‚ Ò
}ÈÓºÓÒ˰}ºä‚ mÒ‚ ˆ¯Ë­‚ˈ°« ÓÈ®ˆÒ ãÒ  ªˆºˆ mÒ È ÓË Áº¯ä‚ã© ÏÈäËÓ©
¹Ë¯ËäËÓÓ©² ˆºmºÏäºÎÓºÒ°¹ºã ϺmÈÓÒË­ºãË˹¯º°ˆº®°²Ë䩯Ȱˈºm
       
       
       iº¹‚°ˆÒä ˆº ¹ºãºÎ҈Ëã Óº º¹¯ËËãËÓÓ©® }mȯȈÒÓ©® Á‚Ó}ÒºÓÈã Φ ( x ) 
¹¯ÒmËËÓ ¹¯Ò ¹ºäºÒ äȈ¯Ò© ¹Ë¯Ë²ºÈ                                                 S  } }ÈÓºÓÒ˰}ºä‚ mÒ‚ ˆº ˰ˆ 
        T
    S           Φ   S = E           º°ãË           ˆºº      ÎË         ¹¯Ëº­¯ÈϺmÈÓÒ«               äȈ¯ÒÈ            }mȯȈÒÓºº
                                                                                      T
Á‚Ó}ÒºÓÈãÈΨ ( x ) ­‚ˈÒäˈ mÒ Ψ ∗ = S      Ψ S 
       
       vºãȰӺ ˆËº¯ËäË  m º¯ˆºÓº¯äÒ¯ºmÈÓÓºä ­ÈÏÒ°Ë ã« ¹º°ˆ¯ºËÓÒ« ÒȺ
ÓÈã Óºº mÒÈ }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ Ψ ( x )  º°ˆÈˆºÓº ÓÈ®ˆÒ °º­°ˆmËÓÓ©Ë Ò°ãÈ
°È亰º¹¯«ÎËÓÓºº º¹Ë¯Èˆº¯È äȈ¯ÒÈ }ºˆº¯ºº ˰ˆ  Ψ ∗  sÈ®Ëä m©¯ÈÎËÓÒË ã«
ªˆº®äȈ¯Ò©‚҈©mÈ Ë˰m«Ï äË΂äȈ¯ÒÈäÒ Φ                                                    Ò S