Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 286 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
ΦΦ
=====
ee e e
S SSESSSSSE
TTT1

È}Òä º¯ÈϺä ¹º°¯ºËÓ ÈÏÒ° m }ºº¯ºä }mȯÈÒÓ©® ÁÓ}ÒºÓÈã
Φ
()x
ÒäËË}ÈÓºÓÒ˰}Ò®mÒÈÁÓ}ÒºÓÈã
Ψ
()x
ÒȺÓÈãÓ©®
{ÏÈ}ãËÓÒËºäËÒäºäÈ¯ÒÈ¹Ë¯Ë²º È}Ò°}ºäºäº¯ºÓº¯äÒ¯ºmÈÓÓºä
ÈÏÒ°˰ ¹ ¯ºÒÏmËËÓÒËº¯ººÓÈãÓº®äÈ¯Ò©
S
Òäȯҩ¹Ë¯Ë²ºÈ¹¯Ò}ºº
¯ºä¹ºãºÎÒËãÓºº¹¯ËËãËÓÓ©® }mȯÈÒÓ©®ÁÓ}ÒºÓÈã ¹¯ÒmºÒ°«} ÒȺÓÈã
ÓºämÒ
ÈÈ

Ëjpzq ojunty wnénuntt} wéqkvl¹yí rkjléjzq·tn {ytr|qvtjs
Φ
()x
2
221
2
1
32
ξ
ξ
ξ
ξ
++=
q
Ψ
()x
2
221
2
1
6164
ξ
ξ
ξ
ξ
++=
vltvkénunttv r lqj
mvtjstvuykqly
ËÓÒË
° j°°ãËËä}mȯÈÒÓ©ËÁÓ}ÒºÓÈã©
Φ
()x
Ò
Ψ
()x
 ÓÈÏÓÈ}ºmº¹¯ËËãËÓÓº°
jÏ}¯Ò˯ҫvÒãm˰¯È˺¯ËäÈÒÓ˯ÈmËÓ°m
det ; det
11
13
20
48
86
40 0
=> = <
ÏÈ}ãÈËäº
Φ
()
x
¹ºãºÎÒËãÓºº¹¯ËËãËÓÓ©®}mȯÈÒÓ©®ÁÓ}ÒºÓÈãm
ºm¯Ëä«}È}ÁÓ}ÒºÓÈã
Ψ
()
x
ÓË«mã«Ë°«ÏÓÈ}ºº¹¯ËËãËÓÓ©ä
° ¯ÒmËËä äËººä ȯÈÓÎÈ }mȯÈÒÓ©® ¹ºãºÎÒËãÓº º¹¯ËËãËÓÓ©® ÁÓ}
ÒºÓÈã
Φ
()
x
}}ÈÓºÓÒ˰}ºämÒº°}ºã}
Φ
()x
2
221
2
1
32
ξ
ξ
ξ
ξ
++=
2
2
2
21
2)(
ξ
ξ
ξ
++=

º m©¹ºãÓÒm ÏÈäËÓ ¹Ë¯ËäËÓÓ©²
=+
=
ξ
ξ
ξ
ξ
112
22
2
ÒãÒ
=
=
22
211
2
1
2
1
ξ
ξ
ξ
ξ
ξ
 ¹ºãÒä
Φ
()x
2
2
2
1
ξ
ξ
+
=
Ò°ººmË°mËÓÓº
Ψ
()x
2
221
2
1
3244
ξ
ξ
ξ
ξ
+
=

°
 {mËËÓÒË m
2
Λ
°}È㫯Ӻº ¹¯ºÒÏmËËÓÒ«°ËÒÓÒÓº® äÈ¯ÒË® ¯ÈäÈ ºÏÓÈÈË
º }ºº¯ÒÓÈ©
};{
21
ξ
ξ
˰ }ºº¯ÒÓÈ© Ëm}ãÒºmÈ ¹¯º°¯ÈÓ°mÈ
Ε
2
°ÈÏÒ°ºä
{, }
′′
ee
12
Ë
=
=
′′
ee
ee
12
1
0
0
1
;

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                      T                           T                    T            −1
                            Φ       e′
                                          = S             Φ    e
                                                                    S = S             E   e
                                                                                              S = S        S = S         S = E         e′
                                                                                                                                            
      
                 ‘È}Òä º­¯ÈϺä ¹º°ˆ¯ºËÓ ­ÈÏÒ° m }ºˆº¯ºä }mȯȈÒÓ©® Á‚Ó}ÒºÓÈã Φ ( x ) 
                 ÒäËˈ}ÈÓºÓÒ˰}Ò®mÒÈÁ‚Ó}ÒºÓÈãΨ ( x ) ÒȺÓÈã Ó©®
              
              
              {ÏÈ}ã ËÓÒ˺ˆäˈÒ䈺äȈ¯Òȹ˯˲ºÈ}Ò°}ºäºä‚º¯ˆºÓº¯äÒ¯ºmÈÓÓºä‚
­ÈÏÒ°‚˰ˆ ¹¯ºÒÏmËËÓÒ˺¯ˆººÓÈã Óº®äȈ¯Ò© S ÒäȈ¯Ò©¹Ë¯Ë²ºÈ¹¯Ò}ºˆº
¯ºä ¹ºãºÎ҈Ëã Óº º¹¯ËËãËÓÓ©® }mȯȈÒÓ©® Á‚Ó}ÒºÓÈã ¹¯Òmº҈°« } ÒȺÓÈã 
Óºä‚mÒ‚
          
          
 ~ÈÈÈ       Ëjpzq ojunty wnénuntt€} wéqkvl¹yí rkjléjzq·t€n {ytr|qvtjs€
 
               Φ ( x ) = ξ12 + 2ξ1ξ 2 + 3ξ 22  q Ψ ( x ) = 4ξ12 + 16ξ1ξ 2 + 6ξ 22  vltvkénunttv r lqj
               mvtjstvuykqly
          
cËËÓÒË
        
° j°°ãË‚Ëä}mȯȈÒÓ©ËÁ‚Ó}ÒºÓÈã© Φ ( x ) Ò Ψ ( x ) ÓÈÏÓÈ}ºm‚ º¹¯ËËãËÓÓº°ˆ 
      jÏ}¯ÒˆË¯Ò«vÒã m˰ˆ¯È ˆËº¯ËäÈ ÒÓ˯ÈmËÓ°ˆm
      
                                                              1 1                              4 8
                                                  det                    = 2 > 0 ; det                = −40 < 0 
                                                              1 3                              8 6
      
      ÏÈ}ã ÈË䈺 Φ ( x ) ¹ºãºÎ҈Ëã Óºº¹¯ËËãËÓÓ©®}mȯȈÒÓ©®Á‚Ó}ÒºÓÈãm
      ˆºm¯Ëä«}È}Á‚Ó}ÒºÓÈãΨ ( x ) ÓË«mã«Ëˆ°«ÏÓÈ}ºº¹¯ËËãËÓÓ©ä
      
° ¯ÒmËËä äˈººä ȯÈÓÎÈ }mȯȈÒÓ©® ¹ºãºÎ҈Ëã Óº º¹¯ËËãËÓÓ©® Á‚Ó}
      ÒºÓÈã Φ ( x ) }}ÈÓºÓÒ˰}ºä‚mÒ‚º°}ºã }‚
      
                                                  Φ ( x ) = ξ12 + 2ξ1ξ 2 + 3ξ 22 = (ξ1 + ξ 2 ) 2 + 2ξ 22 
          
                                                                                                                        1
                                              ξ1′ = ξ1 + ξ2        ξ1 = ξ1′ −                                          2
                                                                                                                              ξ 2′
          ˆº m©¹ºãÓÒm ÏÈäËӂ ¹Ë¯ËäËÓÓ©²                 ÒãÒ                                                                  ¹ºã‚Òä
                                             ξ2′ = 2 ξ2             ξ 2 =
                                                                                                                         1
                                                                                                                              ξ 2′
                                                                                                                        2
          Φ ( x ) = ξ1′2 + ξ 2′2 Ò°ººˆmˈ°ˆmËÓÓºΨ ( x ) = 4ξ1′ 2 + 4 2ξ1′ξ 2′ − 3ξ 2′ 2 
          
          
° {mËËÓÒË m Λ2  °}È㫯Ӻº ¹¯ºÒÏmËËÓÒ« ° ËÒÓÒÓº® äȈ¯ÒË® €¯ÈäÈ ºÏÓÈÈˈ
          ˆº }ºº¯ÒÓȈ© {ξ1′; ξ 2′ }  ˰ˆ  }ºº¯ÒÓȈ© Ëm}ãÒºmÈ ¹¯º°ˆ¯ÈÓ°ˆmÈ Ε 2  ° ­ÈÏÒ°ºä
                                                  1                               0
          {e1′ , e2′ } Ë e1′        e′
                                              =           ;        e2′   e′
                                                                              =     
                                                  0                               1