Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 284 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
° |Óº¯äÒ¯ºmÈmÈÏÒ°
{, , }fff
123
¹ºãÒä
=
e
1
1
3
1
3
1
3

=
e
2
1
2
1
2
0
Ò
=
e
3
1
6
1
6
2
6

lÈ¯ÒÈ
S =
−−
1
3
1
2
1
6
1
3
1
2
1
6
1
3
0
2
6
¹Ë¯Ë²ºÈ º ÈÏÒ°È
{, , }eee
123
} ÈÏÒ°
{, , }
′′
eee
123
°ºãÈäÒ}ºº¯º®«mã«°«}ºº¯ÒÓÈÓ©Ë¯ÈÏãºÎËÓÒ«ªãËäËÓºmÈ
ÏÒ°È
{, , }
′′
eee
123
¹ºÈÏÒ°
{, , }
eee
123
º¯ººÓÈãÓÈ«º˰ºmãËmº¯«Ë°ººÓº
ËÓÒ
SS
=
1T
 º ¹ºÏmºã«Ë m©¹Ò°È Áº¯äã© m©¯ÈÎÈÒË ÙÓºm©Ëµ }º
º¯ÒÓÈ©˯ËÏÙ°ȯ©Ëµ
iË®°mÒËãÓº °ä  ÒÏ °ººÓºËÓÒ«
3
2
1
3
2
1
ξ
ξ
ξ
ξ
ξ
ξ
= S
°ãËË
3
2
1
1
3
2
1
ξ
ξ
ξ
ξ
ξ
=
S
ÒãÒº}ºÓÈËãÓº
3
2
1
3
2
1
6
2
6
1
6
1
0
2
1
2
1
3
1
3
1
3
1
ξ
ξ
ξ
ξ
ξ
=

¯ÒmËËÓÒË ºÓÒä ãÒÓˮөä º¹Ë¯Èº¯ºä ¹È¯© }mȯÈÒÓ©² ÁÓ}ÒºÓÈ
ãºmºÒÓÒÏ}ºº¯©²ÏÓÈ}ºº¹¯ËËãËÓÓ©®°ººmË°mËÓÓº}}ÈÓºÓÒ˰}ºä
ÒÒȺÓÈãÓºämÒÈä
°mÓË}ºº¯ºäÈÏÒ°Ë
},...,,{
21
n
ggg
ãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
n
Λ
ÏÈÈÓÈ¹È¯È
}mȯÈÒÓ©² ÁÓ}ÒºÓÈãºm
Φ
()
x
Ò
Ψ
()
x
 ¹Ë¯m©® ÒÏ }ºº¯©² Óȹ¯Òä˯ ¹ºãºÎÒ
ËãÓº º¹¯ËËãËÓÓ©® º°ÈmÒä ÏÈÈ º©°}ÈÓÒ« ÈÏÒ°È
},...,,{
21
n
ggg
 m }ºº¯ºä
ÁÓ}ÒºÓÈã
Φ
()
x
ÒäËË}ÈÓºÓÒ˰}Ò®ÈÁÓ}ÒºÓÈã
Ψ
()
x
ÒȺÓÈãÓ©®mÒ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                                           1                  1                     1
                                                                                       −                                       −
                                                                                               3               2                       6
                                                                                           1                  1                    1
° |ˆÓº¯äÒ¯ºmÈm­ÈÏÒ° { f 1 , f 2 , f 3 } ¹ºã‚Òä e1′ =                                       e2′ =        Ò e3′ =                
                                                                                            3                 2                     6
                                                                                           1                                        2
                                                                                                                               −
                                                                                           3                  0                        6

                                        1       1           1
                                   −                   −
                                         3       2          6
                                        1       1          1
      lȈ¯ÒÈ            S =                                           ¹Ë¯Ë²ºÈ ºˆ ­ÈÏÒ°È {e1 , e2 , e3 }  } ­ÈÏÒ°‚
                                         3       2          6
                                        1                   2
                                                0      −
                                         3                   6
      {e1′ , e2′ , e3′ } °ˆºã­ÈäÒ}ºˆº¯º®«mã« ˆ°«}ºº¯ÒÓȈө˯ÈÏãºÎËÓÒ«ªãËäËӈºm­È
      ÏÒ°È {e1′ , e2′ , e3′ } ¹º­ÈÏÒ°‚ {e1 , e2 , e3 } º¯ˆººÓÈã ÓÈ«ˆº˰ˆ ‚ºmãˈmº¯«Ëˆ°ººˆÓº
                        −1          T
         ËÓÒ        S        = S         ˆº ¹ºÏmºã«Ëˆ m©¹Ò°Èˆ  Áº¯ä‚ã© m©¯ÈÎÈ ÒË ÙÓºm©Ëµ }º
      º¯ÒÓȈ©˯ËÏÙ°ˆÈ¯©Ëµ

                                                   ξ1                                               ξ1′             ξ1′                         ξ1
                                                                                                                                           −1
      iË®°ˆm҈Ëã Óº °ä   ÒÏ °ººˆÓº ËÓÒ« ξ 2 = S                                          ξ 2′  °ãË‚ˈ ξ 2′ = S                    ξ2 
                                                   ξ3                                               ξ 3′            ξ 3′                        ξ3
      ÒãÒº}ºÓȈËã Óº
                                                                 1        1        1
                                                            −
                                                 ξ1′                 3     3        3          ξ1
                                                                 1        1
                                                 ξ 2′ =                            0           ξ 2 
                                                              2            2
                                                 ξ 3′         1           1         2          ξ3
                                                            −                  −
                                                               6           6         6
          
          
          
¯ÒmËËÓÒË ºÓÒä ãÒÓˮөä º¹Ë¯Èˆº¯ºä ¹È¯© }mȯȈÒÓ©² Á‚Ó}ÒºÓÈ
ãºmºÒÓÒÏ}ºˆº¯©²ÏÓÈ}ºº¹¯ËËãËÓÓ©®°ººˆmˈ°ˆmËÓÓº}}ÈÓºÓÒ˰}ºä‚
ÒÒȺÓÈãÓºä‚mÒÈä
          
          
          ‚°ˆ mÓË}ºˆº¯ºä­ÈÏÒ°Ë {g1 , g 2 ,..., g n } ãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ Λn ÏÈÈÓȹȯÈ
}mȯȈÒÓ©² Á‚Ó}ÒºÓÈãºm Φ ( x )  Ò Ψ ( x )  ¹Ë¯m©® ÒÏ }ºˆº¯©² Óȹ¯Òä˯ ¹ºãºÎÒ
ˆËã Óº º¹¯ËËãËÓÓ©® º°ˆÈmÒä ÏÈÈ‚ ºˆ©°}ÈÓÒ« ­ÈÏÒ°È {g1′ , g 2′ ,..., g n′ }  m }ºˆº¯ºä
Á‚Ó}ÒºÓÈã Φ ( x ) ÒäËˈ}ÈÓºÓÒ˰}Ò®ÈÁ‚Ó}ÒºÓÈãΨ ( x ) ÒȺÓÈã Ó©®mÒ