Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 282 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
¯ºÒãã°¯Ò¯Ëä ¹¯ÒäËÓËÓÒË ˺¯Ëä©  ÓÈ ¹¯Òä˯Ë ¯ËËÓÒ« °ãËË®
ÏÈÈÒ
ÈÈ

Íéqwvuvq vézvmvtjstvmvvwnéjzvéjwéqknxzqrlqjmvtjstvuy kqly
k
E
3
rkjléjzq·tp{ytr|qvtjs
Φ
()x
323121
222
ξ
ξ
ξ
ξ
ξ
ξ
+=

ËÓÒË
°
° Ò°²ºÓ©® º¯ºÓº¯äÒ¯ºmÈÓÓ©® ÈÏÒ° °º°ºÒ ÒÏ ªãËäËÓºm
eee
123
1
0
0
0
1
0
0
0
1
===
,,
 {º°°ÈÓºmÒä ¹º }mȯÈÒÓºä ÁÓ}ÒºÓÈã
Φ
()
x
323121
222
ξ
ξ
ξ
ξ
ξ
ξ
+=
¹º¯ºÎÈÒ® ˺ °ÒääË¯ÒÓ©® ÒãÒÓˮө®
ÁÓ}ÒºÓÈã
Bxy
(,)
 Ò°¹ºãϺmÈm Áº¯äã
Bxy x y x y(,) ( )()())
=+
1
2
(
ΦΦΦ
°ä
º¹¯ËËãËÓÒË  { ÈÓÓºä °ãÈË
Φ
()
y
323121
222
ηηηηηη
+=
 È
Φ
()
xy+ ))((2))((2))((2
332233112211
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
+++++++=
Ò¹ººä
323121323121
),(
ξ
η
ξ
η
ξ
ηη
ξ
η
ξ
η
ξ
+++=yxB
Ë
3
2
1
ξ
ξ
ξ
=
e
x
Ò
3
2
1
η
η
η
=
e
y

vã˺mÈËãÓºäÈ¯ÒÈÁÓ}ÒºÓÈãÈ
Φ
()
x
ÒäËËmÒ
011
101
110
=
e

°
cȰ°äº¯Òä¹º°¯ºËÓÓ°ÒääË¯Ò˰}äÈ¯Ò}È}ÏÈÈ°È亰º¹¯«ÎËÓ
Ó©®º¹Ë¯Èº¯
ˆ
m
E
3
ÒÓÈ®Ëä ã«Ó˺ °º°mËÓÓ©ËÏÓÈËÓÒ«vº°Èmã«Ëä ²È
¯È}˯ҰÒ˰}ºË ¯ÈmÓËÓÒË 
0
11
11
11
det =
λ
λ
λ
ÒãÒ
λλ
3
320−+=
 |Óº
ÒäËË}º¯ÓÒ
λλ
123
21=− =,
,
}ºº¯©ËÒ«mã«°«°º°mËÓÓ©äÒÏÓÈËÓÒ«äÒ
~ÈäËÒäº˰ãÒÓȰÒÓ˯˰Ëºã}º ÒȺÓÈãÓ©®}mȯÈÒÓººÁÓ}
ÒºÓÈãÈ º ˺ äºÎÓº ÓȹҰÈ º°Óºm©mÈ«°ÓÈ°ã˰mÒÒ  }È}
222
321
2)(
ξ
ξ
ξ
+
+
=x
ÒÓÈªºäÏÈ}ºÓÒ¯ËËÓÒËÏÈÈÒ
°
{°ãÈËÈ¯ËË°«ÓÈ®ÒÈ}ÎËÒäÈ¯Ò
S
äÈ¯Ò¹Ë¯Ë²ºÈºÒ°
²ºÓººº¯ºÓº¯äÒ¯ºmÈÓÓººÈÏÒ°È}Ò°}ºäºäÓ˺²ºÒäº¹º°¯ºÒ°º°mËÓ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



         ¯ºÒãã °ˆ¯Ò¯‚Ëä ¹¯ÒäËÓËÓÒË ˆËº¯Ëä©  ÓÈ ¹¯Òä˯Ë ¯Ë ËÓÒ« °ãË‚ Ë®
ÏÈÈÒ
         
         
 ~ÈÈÈ            Íéq wvuvq vézvmvtjstvmv vwnéjzvéj wéqknxzq r lqjmvtjstvuy kqly
 
                    k E 3 rkjléjzq·t€p{ytr|qvtjs Φ ( x ) = 2ξ1ξ 2 + 2ξ1ξ 3 − 2ξ 2ξ 3 
           
           
cËËÓÒË

°‚°ˆ        Ò°²ºÓ©®          º¯ˆºÓº¯äÒ¯ºmÈÓÓ©®                   ­ÈÏÒ°             °º°ˆºÒˆ               ÒÏ        ªãËäËӈºm
              1          0           0
      e1 = 0 , e2 = 1 , e3 = 0                       {º°°ˆÈÓºmÒä               ¹º       }mȯȈÒÓºä‚                    Á‚Ó}ÒºÓÈã‚
              0          0           1
      Φ ( x ) = 2ξ1ξ 2 + 2ξ1ξ 3 − 2ξ 2ξ 3             ¹º¯ºÎÈ Ò®                 ˺       °Òääˈ¯ÒÓ©®                  ­ÒãÒÓˮө®
                                                                                 1
      Á‚Ó}ÒºÓÈã B ( x , y )  Ò°¹ºã ϺmÈm Áº¯ä‚ã‚ B ( x , y ) =                (Φ ( x + y ) − Φ ( x ) − Φ ( y ))  °ä
                                                                                 2
      º¹¯ËËãËÓÒË   { ÈÓÓºä °ã‚ÈË                             Φ ( y) = 2η1η 2 + 2η1η3 − 2η 2η3  È
      Φ ( x + y) = 2(ξ1 + η1 )(ξ 2 + η 2 ) + 2(ξ1 + η1 )(ξ 3 + η3 ) − 2(ξ 2 + η 2 )(ξ 3 + η3 ) Ò¹ºˆºä‚

                                                                                                         ξ1                     η1
                 B ( x, y ) = ξ1η 2 + ξ1η3 − ξ 2η3 + η1ξ 2 + η1ξ 3 − η 2ξ 3 Ë x               e
                                                                                                       = ξ 2 Ò y        e
                                                                                                                              = η 2 
                                                                                                         ξ3                     η3
      
                                                                                                             0        1         1
      vã˺mȈËã ÓºäȈ¯ÒÈÁ‚Ó}ÒºÓÈãÈ Φ ( x ) ÒäËˈmÒ                                             = 1        0       − 1 
                                                                                                       e
                                                                                                              1     −1          0
         
°cȰ°äºˆ¯Ò乺°ˆ¯ºËÓӂ °Òääˈ¯Ò˰}‚ äȈ¯Ò‚}È}ÏÈÈ ‚ °È亰º¹¯«ÎËÓ
                                ˆ
      Ó©® º¹Ë¯Èˆº¯   m E 3  Ò ÓÈ®Ëä ã« Ó˺ °º­°ˆmËÓÓ©Ë ÏÓÈËÓÒ« vº°ˆÈmã«Ëä ²È
                                                  −λ     1    1
      ¯È}ˆË¯Ò°ˆÒ˰}ºË ‚¯ÈmÓËÓÒË  det       1 − λ − 1 = 0  ÒãÒ λ 3 − 3λ + 2 = 0  |Óº
                                                     1 −1 − λ
      ÒäËˈ}º¯ÓÒ λ1 = −2 , λ 2 ,3 = 1 }ºˆº¯©ËÒ«mã« ˆ°«°º­°ˆmËÓÓ©äÒÏÓÈËÓÒ«äÒ
         
      ~ÈäˈÒä ˆº ˰ãÒ ÓȰ Òӈ˯˰‚ˈ ˆºã }º ÒȺÓÈã Ó©® mÒ}mȯȈÒÓººÁ‚Ó}
      ÒºÓÈãÈ ˆº ˺ äºÎÓº ÓȹҰȈ  º°Óºm©mÈ«°  ÓÈ °ã˰ˆmÒÒ  }È}
       ( x ) = −2ξ1′ 2 + ξ 2′ 2 + ξ 3′ 2 ÒÓȪˆºäÏÈ}ºÓ҈ ¯Ë ËÓÒËÏÈÈÒ
            
°{°ã‚ÈË}ºÈˆ¯Ë­‚ˈ°«ÓÈ®ˆÒˆÈ}ÎËÒäȈ¯Ò‚ S äȈ¯Ò‚¹Ë¯Ë²ºÈºˆÒ°
     ²ºÓººº¯ˆºÓº¯äÒ¯ºmÈÓÓºº­ÈÏÒ°È}Ò°}ºäºä‚Ó˺­²ºÒ亹º°ˆ¯ºÒˆ °º­°ˆmËÓ