Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 283 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


¯Ò}ãÈÓ©ËÏÈÈÒãÒÓˮӺ®ÈãË¯©
Ó©ËmË}º¯©º¹Ë¯Èº¯È
ˆ
iã«ªººËä¹º°ã˺mÈËãÓº¹º°Èmã«ÓÈ®ËÓÓ©Ë
°º°mËÓÓ©ËÏÓÈËÓÒ«m°Ò°ËäÒ°¯ºÒËËºÒË¯ËËÓÒ«
iã«
λ
=−
2
ÒäËËä
0
0
0
211
121
112
3
2
1
=
ξ
ξ
ξ

~ÈäËÒä º ¯ÈÓ º°ÓºmÓº® äÈ¯Ò© ªº® °Ò°Ëä© ¯ÈmËÓ  ¹º°}ºã} ¯ËË
¯ÈmÓËÓÒË˰¯ÈÏÓº°¹Ë¯m©²m²iÈãËËË®°m«¹º°²ËäËº¹Ò°ÈÓÓº®m¹
äËºÈ°°È¹ºãÈËäã«}ºä¹ºÓËÓºm°º°mËÓÓººmË}º¯È°Ò°Ëä°ãºmÒ®
=+
=+
321
321
2
2
ξ
ξ
ξ
ξ
ξ
ξ

¯ÒÓÒäÈ«
ξ
3
ÏÈ°mººÓºËÓËÒÏm˰ÓºË¹ºãÒä°º°mËÓÓ©®mË}º¯
1
1
1
1
=f

z¯ÈÓº° °º°mËÓÓºº ÏÓÈËÓÒ«
λ
=
1
¯ÈmÓÈ  Ò m °Òã °ã˰mÒ«  Ëä
ºãÎÓ© ºmËÈ mÈ ãÒÓˮӺ ÓËÏÈmÒ°Ò䩲 Óº ÓË º«ÏÈËãÓº º¯ººÓÈãÓ©²
°º°mËÓÓ©²mË}º¯ÈzºÓ}¯ËÓº}ºä¹ºÓËÓ©°º°mËÓÓººmË}º¯ÈºãÎÓ©ºm
ãËmº¯«°ãËË®°Ò°ËäË¯ÈmÓËÓÒ®
0
0
0
111
111
111
3
2
1
=
ξ
ξ
ξ

ÒÏ }ºº¯©² ÓËÏÈmÒ°ÒäºË ºã}º ºÓº
321
ξ
ξ
+=
 |ËË ¯ËËÓÒË ªº® °Ò°Ëä©
ËÒäËmÒ
1
0
1
0
1
1
3
2
1
βα
ξ
ξ
ξ
+=

zÈΩ® °ºãËÈ}ºº È º¯ººÓÈãËÓ
f
1
 Óº m©¯ÈÓÓ©Ë }ºÓ}¯ËÓ©Ë
ÁÓÈäËÓÈãÓ©Ë ¯ËËÓÒ« ÓË º¯ººÓÈãÓ© ¯ ¯ ºªºä ¹È¯
º¯ººÓÈãÓ©² °º°mËÓÓ©² mË}º¯ºm ºmËÈÒ²
λ
=
1
 °Áº¯äÒ¯Ëä ÒÏ ¹Ë¯mºº
ÁÓÈäËÓÈãÓºº ¯ËËÓÒ« Ò º¯ººÓÈãÓº® Ëä ãÒÓˮӺ® }ºäÒÓÈÒÒ ¹Ë¯mºº Ò
mº¯ºº °ãºmÒË º¯ººÓÈãÓº°Ò °ºãºm
1
1
0
Ò
αβ
α
β
+
 ºËmÒÓº ˰
20
αβ
+ =
|}È¹ºãÈËä
0
1
1
2
=
f
Ò
2
1
1
3
=
f

cÈÏËã
¯Ò}ãÈÓ©ËÏÈÈÒãÒÓˮӺ®ÈãË­¯©



                                                ˆ
      Ó©ËmË}ˆº¯©º¹Ë¯Èˆº¯È  i㫪ˆºº­‚Ë乺°ã˺mȈËã Óº¹º°ˆÈm㫈 ÓÈ®ËÓÓ©Ë
      °º­°ˆmËÓÓ©ËÏÓÈËÓÒ«m°Ò°ˆËä‚  Ò°ˆ¯ºÒˆ Ë˺­ÒË¯Ë ËÓÒ«

                                                                        ξ1    2
                                                                              0       1      1
                                           iã« λ = −2 ÒäËËä 1 2 − 1 ξ 2 = 0 
                                                                1 −1 2 ξ3     0
      
      ~ÈäˈÒä ˆº ¯ÈÓ º°ÓºmÓº® äȈ¯Ò© ªˆº® °Ò°ˆËä© ¯ÈmËÓ  ¹º°}ºã }‚ ˆ¯Ëˆ Ë
      ‚¯ÈmÓËÓÒË˰ˆ ¯ÈÏÓº°ˆ ¹Ë¯m©²m‚²iÈãËËË®°ˆm‚«¹º°²Ëä˺¹Ò°ÈÓÓº®m¹
       äˈº€È‚°°È ¹ºã‚ÈËäã«}ºä¹ºÓËӈºm°º­°ˆmËÓÓººmË}ˆº¯È°Ò°ˆËä‚‚°ãºmÒ®
      
                                                                  2ξ1 + ξ 2 = −ξ 3
                                                                                   
                                                                   ξ1 + 2ξ 2 = ξ 3
                                                                                                                                        −1
      ¯ÒÓÒäÈ« ξ3 ÏȰmº­ºÓºËÓËÒÏm˰ˆÓºË¹ºã‚Òä°º­°ˆmËÓÓ©®mË}ˆº¯ f1 =                                                            1 
                                                                                                                                          1
      
      z¯ÈˆÓº°ˆ  °º­°ˆmËÓÓºº ÏÓÈËÓÒ« λ = 1  ¯ÈmÓÈ  Ò m °Òã‚ °ã˰ˆmÒ«  Ëä‚
      ºãÎÓ© ºˆmËȈ  mÈ ãÒÓˮӺ ÓËÏÈmÒ°Ò䩲 Óº ÓË º­«ÏȈËã Óº º¯ˆººÓÈã Ó©² 
      °º­°ˆmËÓÓ©²mË}ˆº¯ÈzºÓ}¯ËˆÓº}ºä¹ºÓËӈ©°º­°ˆmËÓÓººmË}ˆº¯ÈºãÎÓ©‚ºm
      ãˈmº¯«ˆ °ãË‚ Ë®°Ò°ˆËäË‚¯ÈmÓËÓÒ®
      
                                                             −1    1 1 ξ1      0
                                                               1 − 1 − 1 ξ 2 = 0 
                                                               1 −1 −1 ξ3      0
      
      ÒÏ }ºˆº¯©² ÓËÏÈmÒ°ÒäºË ˆºã }º ºÓº ξ1 = ξ 2 + ξ 3  |­ËË ¯Ë ËÓÒË ªˆº® °Ò°ˆËä©
                       ξ1      1     1
      ­‚ˈÒäˈ mÒ ξ 2 = α 1 + β 0 
                       ξ3      0     1
      
      zÈΩ® °ˆºã­Ë ˆÈ}ºº mÒÈ º¯ˆººÓÈãËÓ f 1  Óº m©­¯ÈÓÓ©Ë }ºÓ}¯ËˆÓ©Ë
      Á‚ÓÈäËӈÈã Ó©Ë ¯Ë ËÓÒ« ÓË º¯ˆººÓÈã Ó© ¯‚ ¯‚‚ ºªˆºä‚ ¹È¯‚
      º¯ˆººÓÈã Ó©² °º­°ˆmËÓÓ©² mË}ˆº¯ºm ºˆmËÈ Ò² λ = 1  °Áº¯äÒ¯‚Ëä ÒÏ ¹Ë¯mºº
      Á‚ÓÈäËӈÈã Óºº ¯Ë ËÓÒ« Ò º¯ˆººÓÈã Óº® Ëä‚ ãÒÓˮӺ® }ºä­ÒÓÈÒÒ ¹Ë¯mºº Ò
                                                                                             1               α +β
      mˆº¯ºº °ãºmÒË º¯ˆººÓÈã Óº°ˆÒ °ˆºã­ºm                                          1  Ò            α   ºËmÒÓº ˰ˆ 
                                                                                             0                 β
                                           1           −1
       2α + β = 0 |ˆ}‚ȹºã‚ÈËä f 2 = 1 Ò f 3 = 1 
                                           0          −2