Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 280 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
sȹºäÓÒä ¹¯ËmȯÒËãÓº°ä¹º}mȯÈÒÓ©®ÁÓ}ÒºÓÈãm
n
Λ
äºÎË
©ÏÈÈÓ Áº¯ä㺮
g
g
g
ik
n
k
n
i
ki
x
xx
T
11
)(
==
∑∑
==
ξ
ξ
ϕ
 m }ºº¯º® °ÒääË¯Ò˰}È«
äÈ¯ÒÈ
g
Φ
¹¯Ëº¯ÈÏË°« ¹¯Ò ¹Ë¯Ë²ºË º ÈÏÒ°È
},...,,{
21 n
ggg
}ÈÏÒ°
},...,,{
21 n
ggg
¹º¹¯ÈmÒã
ΦΦ
=
gg
SS
T

¯Ò º}ÈÏÈËã°mË ˺¯Ëä©  Ò°¹ºãϺmÈãȰ äÈËäÈÒ˰}È« ÒÓ}Ò« m
°ºËÈÓÒÒ ° äËººä klnsntq¹ wvst} rkjléjzvk ÓÈÏ©mÈËä©ä ÒÓºÈ äËººä Éj
méjtj ¹¯ÒäËÓËÓÒË }ºº¯ºº ÓÈ ¹¯È}Ò}Ë äÈãººÓº v˰mËÓÓº ºãËË
ªÁÁË}ÒmÓ©ä ° º}Ò ϯËÓÒ« äÒÓÒäÒÏÈÒÒ ÏÈ¯È Ò°ãÒËãÓ©² °ÒãÒ®
¹¯Ë°Èmã«Ë°«È㺯Òäº°Óºmº®}ºº¯ºº«mã«Ë°«
˺¯ËäÈ

iã«m°«}ºº}mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ ÏÈÈÓÓººm º¯ºÓº¯äÒ¯ºmÈÓ
Óºä ÈÏÒ°Ë °˰mË º¯ºÓº¯äÒ¯ºmÈÓÓ©® ÈÏÒ° m }ºº¯ºä ªº
ÁÓ}ÒºÓÈãÒäËËÒȺÓÈãÓ©®mÒ

iº}ÈÏÈËã°mº
°zÈ} ©ãº ¹º}ÈÏÈÓº m ¹ äÈ¯ÒÈ }mȯÈÒÓºº ÁÓ}ÒºÓÈãÈ
Φ
()
x
ÒÏäËÓ«Ë°« ¹º ¹¯ÈmÒã
S
S
ee
T
=
 Ë
S
ij
=
σ
äȯÒÈ
¹Ë¯Ë²ºÈ º ÈÏÒ°È
},...,,{
21
n
eee
}ÈÏÒ°
{, ,..., }
′′
ee e
n
12
 º ˰
],1[,
1
nkee
n
s
sskk
==
=
σ
 È
e
 °ÒääË¯Ò˰}È« äÈ¯ÒÈ ÒãÒÓˮӺº
ÁÓ}ÒºÓÈãÈ¹º¯ºÎÈ˺}mȯÈÒÓ©®ÁÓ}ÒºÓÈã
Φ
()
x

°
º°}ºã} äÈ¯ÒÈ ¹Ë¯Ë²ºÈ
S
ººÓºº º¯ºÓº¯äÒ¯ºmÈÓÓºº ÈÏÒ°È }
¯ºä º¯ººÓÈãÓÈ« °ä ¹ º ã« ÓËË °¹¯ÈmËãÒmº ¯ÈmËÓ°mº
SS
=
1T
 |}È m©Ë}ÈË º m ¯È°°äÈ¯ÒmÈËäºä ÓÈäÒ °ã
ÈË
SS
ee
1
=

°nº¯äÈãÓº °ÒääË¯Ò˰}È« äÈ¯ÒÈ
e
m º¯ºÓº¯äÒ¯ºmÈÓÓºä ÈÏÒ°Ë
{, ,..., }
ee e
n
12
º¹¯ËËã«Ë °È亰º¹¯«ÎËÓÓ©® º¹Ë¯Èº¯ ãËääÈ 
ˆ

äÈ¯ÒÈ }ºº¯ºº m ÈÏÒ°Ë
},...,,{
21
n
eee
ÓȲºÒ°« ¹º Áº¯äãË
S
S
ee
1
=
˺¯ËäÈ

 jÓºÈ ÏÈÈ º©°}ÈÓÒ« º¯ºÓº¯äÒ¯ºmÈÓÓºº ÈÏÒ°È m }ºº¯ºä }mȯÈÒÓ©® ÁÓ}ÒºÓÈã
ÒäËË ÒȺÓÈãÓ©® ÓÈÏ©mÈÙ¹¯ÒmËËÓÒËä }mȯÈÒÓººÁÓ}ÒºÓÈãÈ } ÒȺÓÈãÓºä
¹¯Ò¹ºäºÒº¯ººÓÈãÓº®äÈ¯Ò©¹Ë¯Ë²ºÈµ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          sȹºäÓÒ乯Ëmȯ҈Ëã Óº °ä¹ ˆº}mȯȈÒÓ©®Á‚Ó}ÒºÓÈãm Λn äºÎˈ
                                                           n   n
                                                       ∑∑ϕ kiξ k ξ i =
                                                                                       T
­©ˆ  ÏÈÈÓ Áº¯ä‚㺮  ( x ) =                                                   x   g
                                                                                                      x   g
                                                                                                                m }ºˆº¯º® °Òääˈ¯Ò˰}È«
                                                                                               g
                                                      k =1i =1
äȈ¯ÒÈ             Φ   g
                               ¹¯Ëº­¯Èςˈ°« ¹¯Ò ¹Ë¯Ë²ºË ºˆ ­ÈÏÒ°È {g1 , g 2 ,..., g n }  } ­ÈÏÒ°‚
                                                                      T
{g1′ , g ′2 ,..., g n′ } ¹º¹¯ÈmÒã‚ Φ               g′
                                                           = S            Φ    g
                                                                                   S 
          
          
        ¯Ò º}ÈÏȈËã °ˆmË ˆËº¯Ëä©  Ò°¹ºã ϺmÈãȰ  äȈËäȈÒ˰}È« ÒÓ‚}Ò« m
°ºˈÈÓÒÒ ° äˈººä k€lnsntq¹ wvst€} rkjléjzvk ÓÈÏ©mÈËä©ä ÒÓºÈ äˈººä Éj
méjt j  ¹¯ÒäËÓËÓÒË }ºˆº¯ºº ÓÈ ¹¯È}ˆÒ}Ë äÈ㺂º­Óº v‚Ë°ˆmËÓÓº ­ºãËË
ªÁÁË}ˆÒmÓ©ä ° ˆº}Ò ϯËÓÒ« äÒÓÒäÒÏÈÒÒ ÏȈ¯Èˆ m©Ò°ã҈Ëã Ó©² ‚°ÒãÒ® 
¹¯Ë°ˆÈmã«Ëˆ°«È㺯҈亰Ӻmº®}ºˆº¯ºº«mã«Ëˆ°«
          
          
 ‘˺¯ËäÈ     iã« m°«}ºº }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ ÏÈÈÓÓºº m º¯ˆºÓº¯äÒ¯ºmÈÓ
      Óºä ­ÈÏÒ°Ë °‚Ë°ˆm‚ˈ º¯ˆºÓº¯äÒ¯ºmÈÓÓ©® ­ÈÏÒ° m }ºˆº¯ºä ªˆºˆ
              Á‚Ó}ÒºÓÈãÒäËˈÒȺÓÈã Ó©®mÒ 
          
  iº}ÈÏȈËã°ˆmº
    
    
        °zÈ} ­©ãº ¹º}ÈÏÈÓº m ¹ äȈ¯ÒÈ }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ Φ ( x ) 
                                                                                       T
                 ÒÏäËӫˈ°« ¹º ¹¯ÈmÒã‚                                     = S                    S  Ë S = σ ij   äȈ¯ÒÈ
                                                                          e′                   e
                 ¹Ë¯Ë²ºÈ ºˆ ­ÈÏÒ°È {e1, e 2 ,..., e n }  } ­ÈÏÒ°‚                                          {e1′ , e2′ ,..., en′ }  ˆº ˰ˆ 
                              n
                 ek′ = ∑ σ sk e s ,k = [1, n]  È                      °Òääˈ¯Ò˰}È« äȈ¯ÒÈ ­ÒãÒÓˮӺº
                                                                          e
                          s =1
                 Á‚Ó}ÒºÓÈãȹº¯ºÎÈ Ëº}mȯȈÒÓ©®Á‚Ó}ÒºÓÈã Φ ( x ) 
                 
          °º°}ºã }‚ äȈ¯ÒÈ ¹Ë¯Ë²ºÈ S  ºˆ ºÓºº º¯ˆºÓº¯äÒ¯ºmÈÓÓºº ­ÈÏÒ°È }
               ¯‚ºä‚ º¯ˆººÓÈã ÓÈ« °ä ¹  ˆº ã« ÓËË °¹¯ÈmËãÒmº ¯ÈmËÓ°ˆmº
                         −1             T
                     S        = S            |ˆ}‚È m©ˆË}Èˈ ˆº m ¯È°°äȈ¯ÒmÈËäºä ÓÈäÒ °ã‚
                                             −1
                 ÈË                  = S                    S 
                                  e′                   e
                 
          °nº¯äÈã Óº °Òääˈ¯Ò˰}È« äȈ¯ÒÈ                                           m º¯ˆºÓº¯äÒ¯ºmÈÓÓºä ­ÈÏÒ°Ë
                                                                                                   e
                                                                                              ˆ
                 {e1 , e2 ,..., en }  º¹¯ËËã«Ëˆ °È亰º¹¯«ÎËÓÓ©® º¹Ë¯Èˆº¯ ãËääÈ    
                 äȈ¯ÒÈ }ºˆº¯ºº m ­ÈÏÒ°Ë {e1′ , e 2′ ,..., e n′ }  ÓȲº҈°« ¹º Áº¯ä‚ãË
                                        −1
                                 = S                S  ˆËº¯ËäÈ 
                         e′                       e


 jÓºÈ ÏÈÈ‚ ºˆ©°}ÈÓÒ« º¯ˆºÓº¯äÒ¯ºmÈÓÓºº ­ÈÏÒ°È m }ºˆº¯ºä }mȯȈÒÓ©® Á‚Ó}ÒºÓÈã
ÒäËˈ ÒȺÓÈã Ó©® mÒ ÓÈÏ©mÈ ˆ Ù¹¯ÒmËËÓÒËä }mȯȈÒÓºº Á‚Ó}ÒºÓÈãÈ } ÒȺÓÈã Óºä‚
mÒ‚¹¯Ò¹ºäºÒº¯ˆººÓÈã Óº®äȈ¯Ò©¹Ë¯Ë²ºȵ