Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 279 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


¯Ò}ãÈÓ©ËÏÈÈÒãÒÓˮӺ®ÈãË¯©
cÈÏËã
cjzkishp~kikjjspqs|qkprch
{ ÈÓÓºä ¯ÈÏËãË ¯È°°äÈ¯ÒmÈ°« ÓË}ºº¯©Ë }ãȰ°© ÏÈÈ  ÒäËÒË mÈÎÓºË
ÏÓÈËÓÒËm¹¯Ò}ãÈÓ©²¯ÈÏËãȲäÈËäÈÒ}ÒÈ}Ò²}È}äÈËäÈÒ˰}È«ÁÒÏÒ}È˺¯Ò«
º¹ÒäÈãÓºº ¹¯ÈmãËÓÒ« äÈËäÈÒ˰}È« ª}ºÓºäÒ}È Ò°ãÒËãÓÈ« äÈËäÈÒ}È Ò
 ¹¯ÒËä ºÒä ã« ªÒ² ÏÈÈ «mã«Ë°« Ò°¹ºãϺmÈÓÒË m ¹¯ºË°°Ë Ò² ¯ËËÓÒ«
¹ºÓ«Ò®ÒäËººm¯ÈÏãÒÓ©²¯ÈÏËãºmãÒÓˮӺ®ÈãË¯©
 ¯ÒmËËÓÒË }mȯÈÒÓ©² ÁÓ}ÒºÓÈãºm } ÒȺÓÈãÓºä
ÈÈ º©°}ÈÓÒ« ÈÏÒ°È m }ºº¯ºä }mȯÈÒÓ©® ÁÓ}ÒºÓÈã ÒäËË ÒȺ
ÓÈãÓ©®ÒãÒ}ÈÓºÓÒ˰}Ò®  º°ÈºÓº Ȱº m°¯ËÈË°« m ¯ÈÏãÒÓ©²
¹¯ÒãºÎËÓÒ«²ä˲ÈÓÒ}ÒÁÒÏÒ}Ò˺¯ÒÒ¹¯ÈmãËÓÒ«
¯ÒmËËÓÒË}ÒȺÓÈãÓºämÒ}mȯÈÒÓººÁÓ}ÒºÓÈãÈ
ÏÈÈÓÓººmº¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°Ë
°mº¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°Ë
},...,,{
21
n
eee
Ëm}ãÒºmÈ¹¯º°¯ÈÓ°mÈ
E
n
ÏÈ
ÈÓ ÓË}ºº¯©® }mȯÈÒÓ©® ÁÓ}ÒºÓÈã
Φ
()x
 cȰ°äº¯Òä ÏÈÈ º©°}ÈÓÒ« m
E
n
º¯ºÓº¯äÒ¯ºmÈÓÓºº ÈÏÒ°È
},...,,{
21
n
eee
 m }ºº¯ºä ÁÓ}ÒºÓÈã
Φ
()
x
ÒäËË ÒȺ
ÓÈãÓ©®mÒ
¯ÒÓÒ¹ÒÈãÓÈ«¯ÈϯËÒ亰¹ººÓº®ÏÈÈÒã«Ó˺¯ºÓº¯äÒ¯ºmÈÓÓººÈ
ÏÒ°È °ãËË ÒÏ ˺¯Ëä©  |ËmÒÓº º È}º® ÈÏÒ° ÓË ËÒÓ°mËÓÓ©® Ò ¹ººä
¹¯Ë°Èmã«Ë°« ÒÓ˯˰өä Ò°°ã˺mÈÓÒË mºÏäºÎÓº°Ò ¹º°¯ºËÓÒ« m
E
n
º¯ºÓº¯äÒ
¯ºmÈÓÓºº ÈÏÒ°È m }ºº¯ºä ÈÓÓ©® }mȯÈÒÓ©® ÁÓ}ÒºÓÈã
Φ
()x
ÒäËË
ÒȺÓÈãÓ©®mÒ
cÈÏËã
¯Ò}ãÈÓ©ËÏÈÈÒãÒÓˮӺ®ÈãË­¯©



               
               
               
               
               
               
               
cÈÏËã
cjzkishp~kik jjspqs|qk€prch
         
         
         
         
         
         { ÈÓÓºä ¯ÈÏËãË ¯È°°äȈ¯ÒmÈ ˆ°« ÓË}ºˆº¯©Ë }ãȰ°© ÏÈÈ ÒäË ÒË mÈÎÓºË
ÏÓÈËÓÒËm¹¯Ò}ãÈÓ©²¯ÈÏËãȲäȈËäȈÒ}ÒˆÈ}Ò²}È}äȈËäȈÒ˰}È«ÁÒÏÒ}Ȉ˺¯Ò«
º¹ˆÒäÈã Óºº ‚¹¯ÈmãËÓÒ« äȈËäȈÒ˰}È« ª}ºÓºäÒ}È m©Ò°ã҈Ëã ÓÈ« äȈËäȈÒ}È Ò
ˆ ¹¯ÒËä º­Òä ã« ªˆÒ² ÏÈÈ «mã«Ëˆ°« Ò°¹ºã ϺmÈÓÒË m ¹¯º˰°Ë Ò² ¯Ë ËÓÒ«
¹ºÓ«ˆÒ®Òäˈººm¯ÈÏãÒÓ©²¯ÈÏËãºmãÒÓˮӺ®ÈãË­¯©
         
         
         
         
 ¯ÒmËËÓÒË }mȯȈÒÓ©² Á‚Ó}ÒºÓÈãºm } ÒȺÓÈã Óºä‚
       mÒ‚
      
      
      
      ~ÈÈÈ ºˆ©°}ÈÓÒ« ­ÈÏÒ°È m }ºˆº¯ºä }mȯȈÒÓ©® Á‚Ó}ÒºÓÈã ÒäËˈ ÒȺ
ÓÈã Ó©® ÒãÒ }ÈÓºÓÒ˰}Ò® mÒ º°ˆÈˆºÓº Ȱˆº m°ˆ¯ËÈˈ°« m ¯ÈÏãÒÓ©²
¹¯ÒãºÎËÓÒ«²ä˲ÈÓÒ}ÒÁÒÏÒ}҈˺¯ÒÒ‚¹¯ÈmãËÓÒ«
      
      
      
      
¯ÒmËËÓÒË}ÒȺÓÈãÓºä‚mÒ‚}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈ
ÏÈÈÓÓººmº¯ˆºÓº¯äÒ¯ºmÈÓÓºä­ÈÏÒ°Ë
           
           
           ‚°ˆ mº¯ˆºÓº¯äÒ¯ºmÈÓÓºä­ÈÏÒ°Ë {e1, e 2 ,..., e n } Ëm}ãÒºmȹ¯º°ˆ¯ÈÓ°ˆmÈ E n ÏÈ
ÈÓ ÓË}ºˆº¯©® }mȯȈÒÓ©® Á‚Ó}ÒºÓÈã Φ ( x )  cȰ°äºˆ¯Òä ÏÈÈ‚ ºˆ©°}ÈÓÒ« m E n 
º¯ˆºÓº¯äÒ¯ºmÈÓÓºº ­ÈÏÒ°È {e1′ , e 2′ ,..., e n′ }  m }ºˆº¯ºä Á‚Ó}ÒºÓÈã Φ ( x )  ÒäËˈ ÒȺ
ÓÈã Ó©®mÒ
       
       ¯ÒÓÒ¹ÒÈã ÓÈ«¯ÈÏ¯Ë Ò亰ˆ ¹ºº­Óº®ÏÈÈÒã«Ó˺¯ˆºÓº¯äÒ¯ºmÈÓÓºº­È
ÏÒ°È °ãË‚ˈ ÒÏ ˆËº¯Ëä©  |ËmÒÓº ˆº ˆÈ}º® ­ÈÏÒ° ÓË ËÒÓ°ˆmËÓÓ©® Ò ¹ºˆºä‚
¹¯Ë°ˆÈmã«Ëˆ°« Òӈ˯˰өä Ò°°ã˺mÈÓÒË mºÏäºÎÓº°ˆÒ ¹º°ˆ¯ºËÓÒ« m E n  º¯ˆºÓº¯äÒ
¯ºmÈÓÓºº ­ÈÏÒ°È m }ºˆº¯ºä ÈÓÓ©® }mȯȈÒÓ©® Á‚Ó}ÒºÓÈã Φ ( x )  ÒäËˈ
ÒȺÓÈã Ó©®mÒ